phân tích thành nhân tử hộ mình với
\( x^3-x^2+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3-2x2-x+2
=x(x2-1)+2(-x2+1)
=x(x2-1)-2(x2-1)
=(x2-1)(x-2)
b)
x2+6x-y2+9
=x2+6x+9-y2
=(x+3)2-y2
=(x+3-y)(x+3+y)
2: \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
\(=\left(x^2+x+1\right)\left(x^2+x+1+1\right)-12\)
Đặt \(x^2+x+1=a\)ta có
\(a\left(a+1\right)-12=a^2+a-12=a^2+4a-3a-12=a\left(a+4\right)-3\left(a+4\right)=\left(a+4\right)\left(a-3\right)\)
Thay \(a=x^2+x+1\)ta được
\(\left(x^2+x+5\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+5\right)\left(x^2+2x-x-2\right)=\left(x^2+x+5\right)\left[x\left(x+2\right)-\left(x+2\right)\right]=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)Kl...
3. \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+7+8\right)+15\)
Đặt \(x^2+8x+7=a\) Ta có
\(a\left(a+8\right)+15=a^2+8a+15=a^2+5a+3a+15=a\left(a+5\right)+3\left(a+5\right)=\left(a+5\right)\left(a+3\right)\)
Thay \(a=x^2+8x+15\)ta được
\(\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
\(=\left(x^2+6x+2x+12\right)\left(x^2+8x+10\right)\)
\(=\left(x+6\right)\left(x+2\right)\left(x^2+8x+10\right)\)
\(=x^3+2x^2-8x=x\left(x^2+2x-8\right)\\ =x\left(x^2-2x+4x-8\right)\\ =x\left(x-2\right)\left(x+4\right)\)
\(x\left(x-y\right)^2-y\left(x-y\right)^2+xy^2-x^2y\)
\(=\left(x-y\right)^2\left(x-y\right)-xy\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-2xy+y^2-xy\right)\)
\(=\left(x-y\right)\left(x^2-3xy+y^2\right)\)
2(x-y)2 -y(x-y)2 +xy2-x2y= 2(x-y)2-y(x-y)2+(xy^2-x^2y)=2(x-y)2-y(x-y)2+xy(x-y)=(x-y)\(\left[2\left(x-y\right)-y\left(x-y\right)+xy\right]\)=(x-y)(2x-2y-xy+y2+xy)=(x-y)(2x-2y+y2)
\(2\left(x-y\right)^2-y\left(x-y\right)^2+xy^2-x^2y\)
\(=\left(x-y\right)^2\left(2-y\right)+xy\left(y-x\right)\)
\(=\left(x-y\right)^2\cdot\left(2-y\right)-xy\left(x-y\right)\)
\(=\left(x-y\right)\left[\left(x-y\right)\left(2-y\right)-xy\right]\)
\(x^3-x^2+2\)
\(=x^3+x^2-2x^2-2x+2x+2\)
\(=x^2\left(x+1\right)-2x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-2x+2\right)\)
x^3-x^2+2 = (x^3+1)-(x^2-1) = (x+1).(x^2-x+1)-(x-1).(x+1)
= (x+1).(x^2-x+1-x+1)
= (x+1).(x^2-2x+2)
Tk mk nha