tính 6/3.5+6/5.7+6/7.9+...+6/19.21
MONG CÁC BẠN GIÚP ĐỠ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C = \(\frac{6}{15.18}+\frac{6}{18.21}+...+\frac{6}{87.90}\)
C = \(2.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)
C = \(2.\left(\frac{1}{15}-\frac{1}{90}\right)=2.\frac{1}{18}\)
C = \(\frac{1}{9}\)
\(B=\frac{6}{1.3}+\frac{6}{3.5}+\frac{6}{5.7}+\frac{6}{7.9}+...+\frac{6}{99.101}\)
\(=3.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{9}{99.101}\right)\)
\(=3.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(=3.\left(\frac{1}{1}-\frac{1}{101}\right)=3.\left(\frac{101}{101}-\frac{1}{101}\right)=3.\frac{100}{101}=\frac{300}{101}\)
\(C=\frac{6}{15.18}+\frac{6}{18.21}+\frac{6}{21.24}+...+\frac{6}{87.90}\)
\(=2.\left(\frac{3}{15.18}+\frac{3}{18.21}+\frac{3}{21.24}+...+\frac{3}{87.90}\right)\)
\(=2.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+....+\frac{1}{87}-\frac{1}{90}\right)\)
\(=2.\left(\frac{1}{15}-\frac{1}{90}\right)=2.\left(\frac{6}{90}-\frac{1}{90}\right)=2.\frac{5}{90}=\frac{1}{9}\)
hình như là sai đề nếu đúng thì phải: \(\dfrac{6}{1.3}+\dfrac{6}{3.5}+\dfrac{6}{5.7}+\dfrac{6}{7.9}\)
Sửa đề:
\(\dfrac{6}{1.3}+\dfrac{6}{3.5}+\dfrac{6}{5.7}+\dfrac{6}{7.9}\)
Lời giải:
Đặt \(A=\dfrac{6}{1.3}+\dfrac{6}{3.5}+\dfrac{6}{5.7}+\dfrac{6}{7.9}\)
\(\Rightarrow A=3.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}\right)\)
\(\Rightarrow A=3.\left(2-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{7}-\dfrac{1}{9}\right)\)
\(\Rightarrow A=3.\left(2-\dfrac{1}{9}\right)\)
\(\Rightarrow A=3.\dfrac{17}{9}\)
\(\Rightarrow A=\dfrac{17}{3}\)
b)
\(\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
c)
\(\frac{7}{3.4}+\frac{7}{4.5}+.....+\frac{7}{60.61}\)
\(=7\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{60}-\frac{1}{61}\right)\)
\(=7\left(\frac{1}{3}-\frac{1}{61}\right)\)
\(=\frac{406}{183}\)
d)
\(\frac{6}{2.4}+\frac{6}{4.6}+....+\frac{1}{72.74}\)
\(=3\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.....+\frac{1}{72}-\frac{1}{74}\right)\)
\(=3\left(\frac{1}{2}-\frac{1}{74}\right)\)
=57/37
A = 1 /1.2 + 1/ 2.3 + 1 /3.4 + . . . + 1/ 49.50 + 1/ 50.51
A = 2 − 1/ 1.2 + 3 − 2 /2.3 + 4 − 3 /3.4 + . . . + 50 − 49 /49.50 + 51 − 50/ 50.51
A = 1 − 1/ 2 + 1/ 2 − 1 /3 + 1 /3 − 1/ 4 + . . . + 1 /50 − 1 /51
A=1-1/51
A=50/51
Mk bik câu B nè!
2B = 2/3.5 + 2/5.7 + 2/7.9 +.......+2/97.99
2B = 1/3 - 1/5 + 1/5 - 1/7 +.......+ 1/97 - 1/99
2B = 1/3 - 1/99
2B = 32/99
=> B = 16/99
\(\frac{6}{3.5}+\frac{6}{5.7}+\frac{6}{7.9}+...+\frac{6}{19.21}\)
\(=3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(=3\left(\frac{1}{3}-\frac{1}{21}\right)\)
\(=3.\frac{2}{7}\)
\(=\frac{6}{7}\)