a) 1.2.3...9 - 1.2.3...8 - 1.2.3...7.82
b) cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2018 là số nguyên tố hay là hợp số.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+[x+1]+[x+2]+...........+[x+30]=1240
[x+x+x+...+x]+(0+1+2+3+...+30)=1240
Từ 0 đến 30 có 31 số lên sẽ có 31 số x
Vậy: x.31+(0+1+2+3+...+30)=1240
x.31+((30+0)x31:2)=1240
x.31+30x31:2=1240
x.31 + 465 =1240
x.31 =1240-465=775
X=775:31
X=25
Vậy x =25
1.2.3........8.9-1.2.3.........8-1.2.3........7.8 2
=1.2.3....8.(9-1-1.2.3....7.8)
=40320.(-40312)
=-1625379840
nhé Nguyễn Trà My
Vì n là số nguyên tố lớn hơn 3 nên n không chia hết cho 3
hay n=3k+1 hoặc n=3k+2(k∈N)
Thay n=3k+1 vào \(n^2+2006\), ta được:
\(\left(3k+1\right)^2+2006=9k^2+6k+2007=3\left(3k^2+2k+669\right)⋮3\)(1)
Thay n=3k+2 vào \(n^2+2006\), ta được:
\(\left(3k+2\right)^2+2006=9k^2+6k+2010=3\left(3k^2+2k+670\right)⋮3\)(2)
Từ (1) và (2) suy ra \(n^2+2006\) là hợp số
sai rồi : a) Giả sử n2 + 2006 là số chính phương khi đó ta đặt n2 + 2006 = a2 ( a( Z) ( a2 – n2 = 2006( (a-n) (a+n) = 2006 (*) (0,25 điểm).
+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của (*) là số lẻ nên không thỏa mãn (*) ( 0,25 điểm).
+ Nếu a,n cùng tính chẵn hoặc lẻ thì (a-n)2 và (a+n) 2 nên vế trái chia hết cho 4 và vế phải không chia hết cho 4 nên không thỏa mãn (*) (0,25 điểm).
Vậy không tồn tại n để n2 + 2006 là số chính phương. (0,25 điểm).
b) n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2 chia hết cho 3 dư 1 do đó n2 + 2006 = 3m + 1 + 2006 = 3m+2007= 3( m+669) chia hết cho 3.
Vậy n2 + 2006 là hợp số.
Ta có: n là số nguyên tố lớn hơn 3
=>n không chia hết cho 3
TH1: n=3m+1 (m thuộc N)
=>n2=(3m+1)2=3m(3m+1)+(3m+1)=9m2+3m+3m+1=3(3m2+2m)+1
=>n2 chia 3 dư 1
TH2: n=3n+2 (k thuộc N)
=>n2=(3k+2)2=3k(3k+2)+2(3k+2)=9k2+6k+6k+4=3(3k2+4k+1)+1
=>n2 chia 3 dư 1
Vậy n2 luôn chia 3 dư 1 (với n là SNT >3)
=>n2=3x+1 (x thuộc N)
=>n2+2006=3x+1+2006=3x+2007=3(x+669) chia hết cho 3
Vậy n2+2006 là hợp số
bạn ơi, đề sai rồi kìa, p bằng bao nhiêu thì 1.2.3. ... .(p-1).p chắc chắn phải chia hết cho p rồi, với lại mk thử lấy p=3 thì 1.2.3. ... .(p-1).p=1.2.3=6 ⋮ p nhưng p là hợp số mà
do số chính phương khi chia cho 3 có số dư là 0 hoặc 1 mà n là số nguyên tố nên n^2 có dạng 3k+1
Ta có:n^2+2018=3k+1+2018=3k+2019
do 3k chia hết cho 3,2019chia hết cho 3
nên 3k+2019 là hợp số hay n^2+2018 là hợp số
Vậy không có số nguyên tố n nào thỏa mãn đề bài
a) 1.2.3...9 - 1.2.3...8 - 1.2.3...7.82
=1.2.3.4.5.6.7.8(9-1-8)
=1.2.3.4.5.6.7.8.0
=0
cho mình cái ^^