Cho x+y=1. Tìm GTNN của biểu thức M=x3+y3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo hằng đẳng thức đáng nhớ thì:
$x^3+y^3+xy=(x+y)(x^2-xy+y^2)+xy=x^2-xy+y^2+xy$
$=x^2+y^2=\frac{1}{2}[(x+y)^2+(x-y)^2]\geq \frac{1}{2}(x+y)^2=\frac{1}{2}$
Vậy GTNN của biểu thức là $\frac{1}{2}$. Giá trị này đạt tại $x+y=1$ và $x-y=0$
$\Leftrightarrow x=y=\frac{1}{2}$
\(x-y=1\Leftrightarrow x=1+y\\ P=\left(x-y\right)\left(x^2+xy+y^2\right)-xy\\ P=x^2+xy+y^2-xy\\ P=x^2+y^2=y^2+2y+1+y^2\\ P=2\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(y+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
Dấu \("="\Leftrightarrow y=-\dfrac{1}{2}\Leftrightarrow x=1-\dfrac{1}{2}=\dfrac{1}{2}\)
a) \(A=x^3+y^3+3xy\)
\(=x^3+y^3+3xy\left(x+y\right)\) (do \(x+y=1\))
\(=x^3+3x^2y+3xy^2+y^3\)
\(=\left(x+y\right)^3\) \(=1\)
b) \(B=x^3-y^3-3xy\)
\(=x^3-y^3-3xy\left(x-y\right)\) (do \(x-y=1\))
\(=x^3-3x^2y+3xy^2-y^3\)
\(=\left(x-y\right)^3\) \(=1\)
x^3 + y^3 = x . x . x + y . y . y
= ( x + y ) . ( x + y ) . ( x + y )
= 1 x 1 x 1
= 1
Vậy GTNN của M = 1