tìm các số nguyên a thỏa mãn (a^2+1)x(a^2-2)x(a^2-5)<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để biểu thức trên <0 thì ta cần có 2 thừa số dương và 1 thừa số âm hoặc cả 3 thừa số đều âm
- Xét trường hợp biểu thức có 2 thừa số dương và 1 thừa số âm
Dễ thấy (a^2 - 5) là thừa số nhỏ nhất => (a^2 - 5) là thừa số âm
ta có: a^2 - 2 dương thì a^2 - 2 >0
a^2 > 0+2
a^2 > 2 (1)
a^2 - 5 là thừa số âm thì : a^2 - 5 < 0
a^2 < 0+5
a^2 <5 (2)
Từ (1) và (2) suy ra a^2 ={4} thì a={-2;2}
-Xét trường hợp biểu thức cùng âm
a^2 - 5 < a^2 - 2 < a^2 + 1 < 0
lấy thừa số lớn nhất: a^2 + 1 < 0 thì ta có: a^2 <-1. mà a^2 -> 0 => vô lí
*** Do đó, để biểu thức (a^2+1)(a^2-2)(a^2-5)<0 thì giá trị nguyên của a là: 2 và -2
b1:
ĐKXĐ: \(x\ne0;x\ne\pm2\)
Ta có : \(A=\left(\frac{4x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{8x^2}{x^2-4}\right)\left(\frac{x-1}{x\left(x-2\right)}-\frac{2\left(x-2\right)}{x\left(x-2\right)}\right)\)
\(=\left(\frac{4x^2-8x-8x^2}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{x-1-2x+4}{x\left(x-2\right)}\right)\)
\(=\left(\frac{4x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{3-3x}{x\left(x-2\right)}\right)\)
\(=\frac{12\left(x-1\right)}{x-2}\)
Vậy ....
Ta có : \(A< 0\Rightarrow\frac{12\left(x-1\right)}{x-2}< 0\)
Đến đây xét 2 TH 12(x-1)<0 & (x-2)>0 hoặc 12(x-1)>0 & (x-2)<0
Vì a^2+1 > 0
=> (a^2-2).(a^2-5) < 0
Mà a^2-2 > a^2-5
=> a^2-2 > 0 ; a^2-5 < 0
=> 2 < a^2 < 5
=> a^2 = 4
=> a thuộc {-2;2}
Vậy a thuộc {-2;2}
Tk mk nha