K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

Ta có: 
1/50 + 1/99 = 149/50.99 
1/51 +1/98 = 149/51.98 
... 
1/74 +1/75=149/74.75 

=> a/b =149*[1/50.99 +..+1/74.75] 

Quy đồng mẫu số vế phải ta được; 
a/b =149.k /[50.51.....99] 

Tuy nhiên do 149 là số nguyên tố nên 50.51..99 không chia hết cho 149 

=> a= 149p, với p là số đã ước lược với các số dưới mẫu số 

=> a chia hết cho 149

16 tháng 6 2019

\(Ta\)\(có:\)

\(\frac{1}{50}\)\(+\)\(\frac{1}{99}\)\(=\frac{149}{50.99}\)

\(\frac{1}{51}+\frac{1}{98}=\frac{149}{51.98}\)

\(...\)

\(\frac{1}{74}+\frac{1}{75}=\frac{149}{74.75}\)

\(\Rightarrow\frac{a}{b}=149\)*\([\frac{1}{50.99}+...+\frac{1}{74.75}]\)

Quy đồng mẫu số vế phải ta được :

\(\frac{a}{b}=149.k/\left[50.51...99\right]\)

Tuy nhiên do 149 là số nguyên tố nên 50.51...99 ko chia hết cho 149

\(\Rightarrow a=149p,với\)\(p\)là số đã ước lược với các số dưới mẫu số

\(\Rightarrow a\)chia hết cho \(149\)

24 tháng 9 2015

10 người đầu ak! vậy bạn có tới 10 nick cơ ak!

8 tháng 10 2018

Ta có : \(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

             \(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

              \(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

             \(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

              \(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)

              \(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(B=\frac{2015}{51}+\frac{2015}{52}+...+\frac{2015}{100}\)

    \(=2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)

\(\Rightarrow\) \(\frac{B}{A}=\frac{2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}=2015\)

\(\Rightarrow\) \(B⋮A\)