Tìm GTLN của biểu thức sau B = \(\frac{2\left|7x+5\right|+11}{\left|7x+5\right|+4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2\left|7x+5\right|+8+3}{\left|7x+5\right|+4}=2+\frac{3}{\left|7x+5\right|+4}\)
Do \(\left|7x+5\right|+4>0\Rightarrow A\) lớn nhất khi \(\left|7x+5\right|+4\) nhỏ nhất
Mà \(\left|7x+5\right|+4\ge4\)
\(\Rightarrow A_{max}=2+\frac{3}{4}=\frac{11}{4}\) khi \(\left|7x+5\right|+4=4\Leftrightarrow7x+5=0\Rightarrow x=-\frac{5}{7}\)
\(A=\frac{2|7x+5|+11}{|7x+5|+4}=2+\frac{11}{|7x+5|+4}\)
Để B đạt GTLN thì: \(\frac{11}{|7x+5|+4}\)phải đạt GTLN (vì 2 không đổi)
Vì tử dường nên số mẫu phải là số nguyên dương nhỏ nhất có thể
Ta thấy: \(|7x+5|\ge0\forall x\)
\(\Rightarrow|7x+5|+4\ge4\forall x\)
Dấu "=" \(\Leftrightarrow|7x+5|=0\)
\(\Leftrightarrow7x=-5\Leftrightarrow x=-\frac{5}{7}\)
Vậy Bmax =\(2+\frac{11}{4}=\frac{19}{4}\)khi\(x=-\frac{5}{7}\)
\(N=\dfrac{\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)+1}{x^2+7x+11}\)
\(=\dfrac{\left[\left(x+2\right)\left(x+5\right)\right]\cdot\left[\left(x+3\right)\left(x+4\right)\right]+1}{x^2+7x+11}\)
\(=\dfrac{\left(x^2+7x+10\right)\left(x^2+7x+12\right)+1}{x^2+7x+11}\)
Đặt \(x^2+7x+11=y\), thay vào \(N\) ta được:
\(N=\dfrac{\left(y-1\right)\left(y+1\right)+1}{y}\)
\(=\dfrac{y^2-1+1}{y}\)
\(=\dfrac{y^2}{y}\)
\(=y\)
\(=x^2+7x+11\)
Vậy \(N=x^2+7x+11\).
\(\text{#}Toru\)
a) \(7x^2-5x-2\) ( a = 7 ; b = -5 ; c = -2 )
Ta có : 7 + (-5) + (-2) = 0 => đa thức p(x) có 1 nghiệm là x = 1
b) \(\frac{1}{3}x^2+\frac{2}{5}x-\frac{11}{15}\) ( a = \(\frac{1}{3}\) ; = \(\frac{2}{5}\) ; c = \(\frac{-11}{15}\) )
Ta có : \(\frac{1}{3}+\frac{2}{5}-\frac{11}{15}\) = 0 => đa thức Q(x) có 1 nghiệm là x = -1
a) Ta có: \(\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)(với mọi x,y)
=>\(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge-10\)
Dấu "=" xảy ra khi x=-2;y=1/5
Vậy GTNN của C là -10 tại x=-2;y=1/5
b)Ta có: \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0\Rightarrow D=\frac{4}{\left(2x-3\right)^2+5}\le\frac{4}{5}\)
Dấu "=" xảy ra khi: x=3/2
Vậy GTLN của D là : 4/5 tại x=3/2
1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)
\(2^x.2^2.3^x.3.5^x=10800\)
\(\Rightarrow\left(2.3.5\right)^x.12=10800\)
\(\Rightarrow30^x=\frac{10800}{12}=900\)
\(\Rightarrow30^x=30^2\)
\(\Rightarrow x=2\)
b,\(3^{x+2}-3^x=24\)
\(\Rightarrow3^x\left(3^2-1\right)=24\)
\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)
2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu bằng xảy ra khi \(ab\ge0\)
Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)
Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)
Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)
d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)
Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)
Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)
\(\Rightarrow B\le1\)
Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)
\(\Rightarrow x\le2017\)
Vậy \(Max_B=1\) khi \(x\le2017\)
để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)
suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)
Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3
\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))
Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!
a) Ta có: \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\)
\(\Leftrightarrow\frac{63\left(3x-11\right)}{693}-\frac{231x}{693}-\frac{99\left(3x-5\right)}{693}+\frac{77\left(5x-3\right)}{693}=0\)
\(\Leftrightarrow189x-693-231x-297x+495+385x-231=0\)
\(\Leftrightarrow46x-429=0\)
\(\Leftrightarrow46x=429\)
hay \(x=\frac{429}{46}\)
Vậy: \(x=\frac{429}{46}\)
b) Ta có: \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{5}\)
\(\Leftrightarrow\frac{9x-0,7}{4}-\frac{5x-1,5}{7}-\frac{7x-1,1}{6}+\frac{5\left(0,4-2x\right)}{5}=0\)
\(\Leftrightarrow105\left(9x-0,7\right)-60\left(5x-1,5\right)-70\left(7x-1,1\right)+420\left(0,4-2x\right)=0\)
\(\Leftrightarrow945x-\frac{147}{2}-300x+90-490x+77+168-840x=0\)
\(\Leftrightarrow-685x+261.5=0\)
\(\Leftrightarrow-685x=-261.5\)
hay \(x=\frac{523}{1370}\)
Vậy: \(x=\frac{523}{1370}\)
c) Ta có: \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x-1\right)}{7}-5\)
\(\Leftrightarrow\frac{14\left(5x-3\right)}{84}-\frac{21\left(7x-1\right)}{84}-\frac{24\left(2x-1\right)}{84}+\frac{420}{84}=0\)
\(\Leftrightarrow70x-42-147x+21-48x+24+420=0\)
\(\Leftrightarrow-125x+423=0\)
\(\Leftrightarrow-125x=-423\)
hay \(x=\frac{423}{125}\)
Vậy: \(x=\frac{423}{125}\)
d) Ta có: \(14\frac{1}{2}-\frac{2\left(x+3\right)}{5}=\frac{3x}{2}-\frac{2\left(x-7\right)}{3}\)
\(\Leftrightarrow\frac{435}{30}-\frac{12\left(x+3\right)}{30}-\frac{45x}{30}+\frac{20\left(x-7\right)}{30}=0\)
\(\Leftrightarrow435-12x-36-45x+20x-140=0\)
\(\Leftrightarrow-37x+259=0\)
\(\Leftrightarrow-37x=-259\)
hay \(x=7\)
Vậy: x=7
\(\frac{2\left|7x+5\right|+11}{\left|7x+5\right|+4}=2+\frac{11}{\left|7x+5\right|+4}\)
Để B lớn nhất thì \(\frac{11}{\left|7x+5\right|+4}\)lớn nhất
Vì tử dương nên mẫu số phải là số nguyên dương nhỏ nhất có thể.
Ta thấy |7x + 5| lớn hơn hoặc bằng 0 => |7x + 5| + 4 lớn hơn hoặc bằng 4
Dấu "=" xảy ra khi |7x + 5| = 0
=> 7x = -5 hay x = \(\frac{-5}{7}\)
Vậy max B = \(2+\frac{11}{4}=\frac{19}{4}\)khi x = \(\frac{-5}{7}\)
~~~
x thuộc N hay x thuộc Z hay x thuộc R bạn chưa cho rõ nên x = -5/7
\(\frac{2\left|7x+5\right|+11}{\left|7x+5\right|+4}=\frac{\left(2\left|7x+5\right|+8\right)+3}{\left|7x+5\right|+4}=\frac{2\left(\left|7x+5+4\right|\right)+3}{\left|7x+5\right|+4}=2+\frac{3}{\left|7x+5\right|+4}\)
Để B lớn nhất thì \(\frac{3}{\left|7x+5\right|+4}\)lớn nhất. Vì tử dương nên mẫu phải là số nguyên dương nhỏ nhất có thể.
Vì |7x + 5| lớn hơn hoặc bằng 0 => |7x + 5| + 4 lớn hơn hoặc bằng 4
Dấu "=" xảy ra khi 7x + 5 = 0 => x = \(\frac{-5}{7}\)
Vậy max B = \(2+\frac{3}{4}=\frac{11}{4}\)khi x = \(\frac{-5}{7}\)