cho p>3. CMR: nếu các số p;p+d;p+2.d là các số nguyên tố thì d chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
SU DUNG NGUYEN LI DIRICHLET DE TIM CHIA HET CHO 3 VI TATCA LA SNT >3
NEN 3 SO KO CHIA HET CHO 3 NÊN CO DANG 3K+1 VÀ 3K+2
3 SỐ LÀ SNT>3 NEN 3 SO LA SÔ LE NÊN N LA CHAN NEN N:2
CMR: Nếu 2 số TN a và b có tổng chia hết cho 3 thì tổng các lập phương của chúng cũng chia hết cho 3
p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho (2 . 3) = 6 (đpcm)
p là số nguyên tố >3=>p=3k+1;3k+2
xét p=3k+2=>10p+1=10(3k+2)+1
=3.10k+20+1=3.10k+21=3(10k+7) chia hết cho 3
=>10p+1 là hợp số(trái giả thuyết)
=>p=3k+1
=>5p+1=5(3k+1)+1=3.5k+5+1=3.5k+6=3(5k+2) chia hết cho 3 (1)
p>3=>p=2q+1
=>5p+1=5(2q+1)+1=10q+5+1=10q+6=2(5q+3) chia hết cho 2 (2)
từ (1);(2)=>5p+1 chia hết cho 2;3
vì (2;3)=1=>5p+1 chia hết cho 6
=>đpcm
Ta có :
396=4.9.11396=4.9.11
-) Nhận xét :
+)A có 2 chữ số tận cùng là 16
⇒⇒ A chia hết cho 4 (1)
+) Tổng các chữ số của A = 1 + 5 + 5+ * + 7 + 1 + 0 + * + 4 + * + 1 + 6 = 30 + * + * + * =36
⇒⇒ A chia hết cho 9 (2)
+) Tổng các chữ số hàng lẻ của A = 1 + 5 + 7 + 0 + 4 + 1 = 18
+) Tổng các chữ số hàng chẵn của A = 5 + * + 1 + * + * + 6 = 12 + * + * + * =12+6 =18
⇒⇒ Tổng các chữ số hàng lẻ trừ đi tổng các chữ số hàng chẵn = 18 - 18 = 0
⇒⇒ A chia hết cho 11 (3)
Từ (1) + (2) + (3) ⇒⇒ A⋮4;9;11A⋮4;9;11
⇒A⋮BCNN(4;9;11)=396⇒A⋮BCNN(4;9;11)=396 vs các chữ số tùy ý 1,2,3
⇒đpcm
Vì p là số nguyên tố lớn hơn 3 nên p Không chia hết cho 3 nên p có dạng 3k +1 hoặc 3 k+2 ( k N)
Nếu p =3k+1
nếu d chia 3 dư 1 thì p+2d
(loại vì p+2d nguyên tố)
nếu d chia cho 3 dư 2 thì p+d chia hết cho 3(loại vì p+d nguyên tố)
Vậy p= 3k+1 thì d chia hết cho 3
Tương tự với p= 3k +2 thì d
vậy p>3 và p; p+d;p+2d là các số nguyên tố thì p chia hết cho 3(1)
p lẻ p+d nguyên tố thì p+d lẻ nên d chẵn do đó d chia hết cho 2(2)
từ (1) ; (2) kết hợp với (2,3) = 1 ta có d chia hết cho 6