Có bao nhiêu số \(x\)thỏa mãn:
\(x^{12}=25x^{10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án cần chọn là: D
15 41 + − 138 41 ≤ x < 1 2 + 1 3 + 1 6 − 3 ≤ x < 1
x∈{−3;−2;−1;0}
Vậy có tất cả 4 giá trị của x
Đáp án cần chọn là: D
Ta cóB(12)={0;12;24;36;48;60;72;84;96;...}
B(15)={0;15;30;45;60;75;90;105;...}
B(20)={0;20;40;60;80;100;...}
NênBC(12;15;20)={0;60;120;...}mà x≤100 và x≠0 nên x=60.
Có một số tự nhiên thỏa mãn đề bài
x-y=8,y-z=10,x+z=12
=>(x-y)+(y-z)+(x+z)=8+10+12
=>2x=30
=>x=30:2=15
thay x=15 vào x-y=8 ta đc:
15-y=8
=>y=15-8=7
thay y=7 vào y-z=10 ta được:
7-z=10
=>z=7-10=-3
=>x+y+z=15+7+(-3)=19
a: Ta có: 9,5<x<17,7
mà x là số nguyên
nên \(x\in\left\{10;11;12;...;17\right\}\)
Số số hạng thỏa mãn là 17-10+1=8(số)
b: Ta có: -1,23<x<2,5
mà x là số nguyên
nên \(x\in\left\{-1;0;1;2\right\}\)
=>Có 4 số thỏa mãn
bằng liệt kê ta có các giá trị của x thỏa mãn là :
\(-9,-6,-3,0,3,6,9\)
Vậy có 7 giá trị nguyên của x thỏa mãn
x12 = 25x10
=> x12 - 25x10 = 0
=> x10(x2 - 25) = 0
=> \(\orbr{\begin{cases}x^{10}=0\\x^2-25=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
=> Có 3 giá trị của x thỏa mãn
Ta có: \(x^{12}=25x^{10}\)
\(\Leftrightarrow x^{12}-25x^{10}=0\)
\(\Leftrightarrow x^{10}\left(x^2-25\right)=0\)
\(\Leftrightarrow x^{10}\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x^{10}=0\\x-5=0\\x+5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=5\\x=-5\end{cases}}}\)
Vậy có 3 giá trị