K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2018

Ta có 2xy-4x+y=7

  => 2xy-4x+y-2=7-2

=> 2x(y-2)+(y-2)=5

=> (y-2)(2x+1)=5

Do x,y là số nguyên nên y-2 và 2x+1 là ước của 5. Ta có bảng sau:

2x+1-5-115
x-3-102
y-2-1-551
y1-373

Vậy...

7 tháng 6 2017

\(2xy-4x+y-9=0\)

\(\Leftrightarrow2x\left(y-2\right)+\left(y-2\right)-7=0\)

\(\Leftrightarrow\left(2x+1\right)\left(y-2\right)=7\)

\(\Rightarrow2x+1\) và \(y-2\) là ước của 7

đến đây dễ rồi tự làm nha

6 tháng 6 2017

x=0 và y=9 ; x=3 và y=3 

x=-1 và y=-5 ; x=-4 và y=1

đúng ko nhỉ

23 tháng 4 2018

Ta có: 2xy - 4x + y - 9 = 0

=> 2x ( y - 2 ) + ( y - 2 ) - 7 = 0

=> ( 2x + 1 )( y - 2 ) = 7

=>

2x+117-1-7
y - 271-7-1

=> 

x140-3
y93-51
23 tháng 4 2018

2xy-4x+y-9=0

\(\Leftrightarrow\)2x(y-2)+ ( y-2)-7=0

\(\Leftrightarrow\)(2x+1)(y-2)=7

\(\Rightarrow\)2x+1 và y-2 là ước của 7

Vì x,y\(\in\)Z\(\Rightarrow\)2x +1 ; y-2 \(\in\)Z\(\Rightarrow\)2x +1;y-2 \(\in\)ước 7

Ta có bảng sau:

2x+11-17-7
y-27-71-1
x0-13-4
y9-531
10 tháng 4 2019

hình như sai đề bạn. chỉ có x hoặc y thôi chứ

10 tháng 4 2019

Đề thi huyện đó bạn.

NV
2 tháng 9 2021

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)< 3\)

\(\Leftrightarrow\left(x-y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2< 3\)

\(\Rightarrow\left(2x-1\right)^2< 3\) (1)

\(\Rightarrow\left(2x-1\right)^2=\left\{0;1\right\}\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=0\\2x-1=1\\2x-1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

- Với \(x=0\Rightarrow2y^2-2y< 1\Rightarrow\left(2y-1\right)^2< 3\Rightarrow\left[{}\begin{matrix}y=0\\y=1\end{matrix}\right.\) (giải như (1))

- Với \(x=1\Rightarrow2y^2+5< 4y+5\Rightarrow y^2-2y< 0\)

\(\Rightarrow y\left(y-2\right)< 0\Rightarrow0< y< 2\Rightarrow y=1\)

Vậy \(\left(x;y\right)=\left(0;0\right);\left(0;1\right);\left(1;1\right)\)

22 tháng 5 2017

pt ở đề bài <=> x^2-2x(y-2)-(3y-1)=0 (1) 

để pt có nghiệm x nguyên thì delta phải là số chính phương 

xét delta=[2(y-2)]^2+4=a^2 => a^2-(2y-4)^2=4=>(a-2y+4)(a+2y-4)=4 đến đây giải pt ước số rồi tìm y => tìm x 

-nghĩ vậy chả biết có đúng không <(")

20 tháng 12 2017

\(5x^2+2xy+y^2-4x=40\)

\(\Leftrightarrow\left(4x^2-4x+1\right)+\left(x^2+2xy+y^2\right)=41\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(x+y\right)^2=41\)

Vì x;y nguyên => 41 là tổng của 2 số CP 

Ta có : \(41=16+25=4^2+5^2\)

Do \(\left(2x-1\right)^2\) là số CP lẻ \(\Rightarrow\left(2x-1\right)^2=5^2\Rightarrow\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)

\(\Rightarrow\left(x+y\right)^2=4^2\Rightarrow\orbr{\begin{cases}x+y=4\\x+y=-4\end{cases}}\)

Với \(x=3\Rightarrow3+y=4\Rightarrow y=1\)(TM)

Với \(x=-2\Rightarrow-2+y=-4\Rightarrow x=-2\)(TM)

Vậy \(\left(x;y\right)\in\left\{\left(3;1\right);\left(-2;-2\right)\right\}\)