Tìm GTLN và GTNN của biêu thức: \(A=\frac{x^2+2x+3}{x^2+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3x^2-2x+3}{x^2+1}\Leftrightarrow A\left(x^2+1\right)=3x^2-2x+3\)
\(\Leftrightarrow Ax^2+A-3x^2+2x-3=0\)
\(\Leftrightarrow x^2\left(A-3\right)+2x+\left(A-3\right)=0\)
\(\Delta'=1-\left(A-3\right)^2\ge0\Leftrightarrow\left(1+A-3\right)\left(1-A+3\right)\ge0\)
\(\Leftrightarrow\left(4-A\right)\left(A-2\right)\ge0\Leftrightarrow2\le A\le4\)
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
\(B=\frac{x^2+2x+3}{x^2+3}=1+\frac{2x}{x^2+3}\le1+\frac{2x}{2x\sqrt{3}}=\frac{\sqrt{3}+1}{\sqrt{3}}\)
Dấu bằng xảy ra khi và chỉ khi \(x^2+3=2x\sqrt{3}\Leftrightarrow\left(x-\sqrt{3}\right)^2=0\Leftrightarrow x=\sqrt{3}\)
\(B=\frac{x^2+2x+3}{x^2+3}=1+\frac{2x}{x^2+3}\ge1+\frac{-\frac{x^2+3}{\sqrt{3}}}{x^2+3}=1-\frac{1}{\sqrt{3}}=\frac{\sqrt{3}-1}{\sqrt{3}}\)
Dấu bằng xảy ra khi và chỉ khi \(2x=-\frac{x^2+3}{\sqrt{3}}\Leftrightarrow2x\sqrt{3}=-\left(x^2+3\right)\Leftrightarrow\left(x+\sqrt{3}\right)^2=0\Leftrightarrow x=-\sqrt{3}\)
Ta có: \(M=\frac{x^2+2x+3}{x^2+2}=\frac{2.\left(x^2+2\right)-\left(x^2-2x+1\right)}{x^2+2}\)
\(=\frac{2.\left(x^2+2\right)}{x^2+2}-\frac{x^2-2x+1}{x^2+2}=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\)
Dấu "=" xảy ra khi \(x-1=0\Rightarrow x=1\)
Vậy Mmax = 2 khi x = 1
\(A=\frac{x^2+2x+3}{x^2+2}\)
\(\Leftrightarrow Ax^2+2A=x^2+2x+3\)
\(\Leftrightarrow Ax^2+2A-x^2-2x-3=0\)
\(\Leftrightarrow x^2\left(A-1\right)-2x+\left(2A-3\right)=0\)
Để pt trên có nghiệm thì \(\Delta=4-4\left(A-1\right)\left(2A-3\right)\ge0\)
\(\Leftrightarrow1-\left(2A^2-5A+3\right)\ge0\Leftrightarrow-2A^2+5A-2\ge0\)
\(\Leftrightarrow\left(1-2A\right)\left(A-2\right)\ge0\Leftrightarrow\frac{1}{2}\le A\le2\)
Vậy A có GTNN là \(\frac{1}{2}\) tại x = - 2
A có GTLN là 2 tại x = 1
\(A=\frac{x^2+2x+3}{x^2+2}=\frac{-x^2+2x-1+2x^2+4}{x^2+2}=\frac{-\left(x-1\right)^2+2\left(x^2+2\right)}{x^2+2}\)
\(=-\frac{\left(x-1\right)^2}{x^2+2}+2\le2\)
Dấu "=" xảy ra <=> x = 1
Vậy Max A = 2 <=> x = 1