K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2018

a)A=4+22+23+...+220

=>2A=23+23+24+...+221

=>2A-A=A=(23+23+24+...+221)-(4+22+23+...+220)

=>A=221

Mà 221=27.214 =128.214 chia hết cho 128

=>A chia hết cho 128.

b) Ta có: 3B=32+33+...+32010

=>3B-B=2B=(32+33+...+32010)-(3+32+...+32009)

=>2B=32010-3

=>2B+3=32010

=>3n = 32010

=>n=2010

30 tháng 1 2016

lì xì tết thì phải vừa nhiều vừa khó chứ

duyệt đi

30 tháng 1 2016

Bạn ơi, bạn hỏi từng câu thôi tớ mói trả lời đc chứ

17 tháng 10 2021

mn mn ơiii

17 tháng 10 2021

helllppppppppp

6 tháng 8 2015

A=4+2+23 +2+....220

A=22+2+23 +2+....220

2A=2(4+2+23 +2+....220)

2A=23+2+24 +2+....221

2A-A=(23+2+24 +2+....221)-(22+2+23 +2+....220)

A=23+221-(22+22)

A=8+221-8

A=221

mà 221 chia hết cho 27

vậy  A có chia hết cho 128

24 tháng 11 2017

A chia hết cho128 nhé!

18 tháng 11 2016

5n\(⋮\)n-2

5n-10+10\(⋮\)n-2

5(n-2)+10\(⋮\)n-2

Vì 5(n-2)\(⋮\)n-2

Buộc 10\(⋮\)n-2=>n-2 ϵ Ư(10)={1;2;5;10}

ta có bảng sau :

n-2 12510
n347

8

vậy n ϵ {3;4;7;8}

 

18 tháng 11 2016

3n+4\(⋮\)n+1

3n+3+1\(⋮\)n+1

3(n+1)+1\(⋮\)n+1

Vì 3(n+1)\(⋮\)n+1

Buộc 1 \(⋮\)n+1=>n+1ϵƯ(1)={1}

Với n+1=1=>n=0

Vậy n ϵ {0}

20 tháng 7 2021

A=3+32+33+...+3100

3A=32+33+...+3101

3A-A=(32+33+...+3101)-(3+32+33+...+3100)

2A=3101-3

2A+3=3101

20 tháng 7 2021

\(A=3+3^2+3^3+...+3^{100}\) 

\(\Rightarrow3A=3.\left(3+3^2+3^3+...+3^{100}\right)\) 

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\) 

\(\Rightarrow3A-A=2A=\left[3^2+3^3+3^4+...+3^{101}\right]-\left[3+3^2+3^3+...+3^{100}\right]\)\(\Rightarrow2A=3^{101}-3\) 

Theo đề bài ta có  2A + 3 = 3n ( \(n\in N\) )

\(\Rightarrow2A+3=3^{101}-3+3=3^n\) 

\(\Rightarrow2A+3=3^{101}=3^n\)  

\(\Rightarrow3^{101}=3^n\) 

\(\Rightarrow101=n\) ( thỏa mãn điều kiện \(n\in N\)

Vậy n = 101 

 

26 tháng 5 2018

Đáp án cần chọn là: C

24 tháng 12 2021

C bạn nhé n bằng  101

22 tháng 11 2018

Ta có:  A = 3 + 3 2 + 3 3 + . . . + 3 100

=>  3 A = 3 2 + 3 3 + 3 4 + . . . + 3 101

=>  3 A - A = ( 3 2 + 3 3 + 3 4 + . . . + 3 101 ) - ( 3 + 3 2 + 3 3 + . . . + 3 100 )

=>  2 A = 3 2 + 3 3 + 3 4 + . . . + 3 101 - 3 - 3 2 - 3 3 - . . . - 3 100

2 A = 3 101 - 3 <=>  2 A + 3 = 3 101 , mà  2 A + 3 = 3 n

=> n = 101