K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2021

a) Phương trình hoành độ giao điểm của (d) và (P) là \(x^2=mx+1\Leftrightarrow x^2-mx-1=0\). (*)

Do ac < 0 nên phương trình luôn có 2 nghiệm phân biệt.

Do đó (d) cắt (P) tại 2 điểm phân biệt.

b) Do I có hoành độ là 0 nên có tung độ là 1. Do đó \(I\left(0;1\right)\).

Dễ thấy \(OI\perp HK\) và OI = 1.

Gọi \(x_1,x_2\) lần lượt là hoành độ của H và K.

Khi đó \(x_1,x_2\) là nghiệm của phương trình (*).

Theo hệ thức Viét ta có \(x_1x_2=-1\).

Ta có \(OK.OH=\left|x_1\right|.\left|x_2\right|=\left|x_1x_2\right|=1=OI^2\) nên tam giác IKH vuông tại I. (đpcm)

17 tháng 11 2017

Đáp án C

7 tháng 11 2017

Bài 3 làm sao v ạ?

a: PTHĐGĐ là:

x^2-(2m+1)x+2m-4=0

Δ=(2m+1)^2-4(2m-4)

=4m^2+4m+1-8m+16

=4m^2-4m+17=(2m-1)^2+16>=16>0 với mọi m

=>(P) luôn cắt (d) tại hai điểm phân biệt

b: x1+x2=2m+1;x1x2=2m-4

HK=4

=>|x1-x2|=4

=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=4\)

=>\(\sqrt{4m^2+4m+1-8m+16}=4\)

=>4m^2-4m+17=16

=>m=1/2

6 tháng 5 2017

Phương trình hoành độ giao điểm của (P) và (d) là \(^{x^2+mx-1=0}\)luông có hai nghiệm phân biệt (vì ac<0)

Tổng và tích hai nghiệm xa, xb là:

xa +  xb = -m

x. xb = -1

Ta có: xa2xb + xb2xa - xaxb = 3 \(\Leftrightarrow\)xaxb(xa + xb) - xaxb = 3 \(\Leftrightarrow\)m + 1 = 3 \(\Leftrightarrow\)m = 2