cho p y=x^2 VÀ (d) y=mx+1(m khác 0)
a cm d cắt p tại 2 điểm phân biệt Avà B
b H VÀ K lần lượt là hình chiếu của A B trên Ox gọi I là giao điểm của d với oy
CM tam giác IHK vuông tại I với mọi giá trị của m khác 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: PTHĐGĐ là:
x^2-(2m+1)x+2m-4=0
Δ=(2m+1)^2-4(2m-4)
=4m^2+4m+1-8m+16
=4m^2-4m+17=(2m-1)^2+16>=16>0 với mọi m
=>(P) luôn cắt (d) tại hai điểm phân biệt
b: x1+x2=2m+1;x1x2=2m-4
HK=4
=>|x1-x2|=4
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=4\)
=>\(\sqrt{4m^2+4m+1-8m+16}=4\)
=>4m^2-4m+17=16
=>m=1/2
Phương trình hoành độ giao điểm của (P) và (d) là \(^{x^2+mx-1=0}\)luông có hai nghiệm phân biệt (vì ac<0)
Tổng và tích hai nghiệm xa, xb là:
xa + xb = -m
xa . xb = -1
Ta có: xa2xb + xb2xa - xaxb = 3 \(\Leftrightarrow\)xaxb(xa + xb) - xaxb = 3 \(\Leftrightarrow\)m + 1 = 3 \(\Leftrightarrow\)m = 2
a) Phương trình hoành độ giao điểm của (d) và (P) là \(x^2=mx+1\Leftrightarrow x^2-mx-1=0\). (*)
Do ac < 0 nên phương trình luôn có 2 nghiệm phân biệt.
Do đó (d) cắt (P) tại 2 điểm phân biệt.
b) Do I có hoành độ là 0 nên có tung độ là 1. Do đó \(I\left(0;1\right)\).
Dễ thấy \(OI\perp HK\) và OI = 1.
Gọi \(x_1,x_2\) lần lượt là hoành độ của H và K.
Khi đó \(x_1,x_2\) là nghiệm của phương trình (*).
Theo hệ thức Viét ta có \(x_1x_2=-1\).
Ta có \(OK.OH=\left|x_1\right|.\left|x_2\right|=\left|x_1x_2\right|=1=OI^2\) nên tam giác IKH vuông tại I. (đpcm)