Cho tam giác MNP cân tại M kẻ MI vuông góc NP ( I thuộc NP) chứng minh
a, ∆ MIN=∆MIP
b, IN=IP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: IN/IP=MN/MP=3/5
c: NP=căn 10^2-6^2=8cm
NI là phân giác
=>NI/MN=IP/MP
=>NI/3=NP/5=8/8=1
=>NI=3cm
S MNI=1/2*3*6=9cm2
Xét tam giác MNI và MPI có
MI là cạnh chung
MN = MP( tam giác MNP cân)
Góc MIN = góc MIP = 90°
=> Tam giác MIN = tam giác MIP( cgv - ch)
IN = IP = 5 cm nên I là trung điểm của NP
b) Tam giác MIN vuông tại I có
NI2 + MI2 = MN2( định lí Pytago)
MI2 + 52 = 142
MI2 + 25 = 196
MI2 = 144
MI=12
c) Xét tam giác PHI và PKI có
MI là cạnh chung
Góc HMI = KMI ( tam giác NMI = PMI )
Góc IHM = IKM = 90°
=》 Tam giác HMI = KMI ( ch - gn)
=》IH=IK
a) Xét hai tam giác vuông: ∆IMN và ∆IKN có:
IN chung
MNI = KNI (do NI là phân giác của ∠MNP)
⇒ ∆IMN = ∆IKN (cạnh huyền - góc nhọn)
b) ∆IKP vuông tại K
IP là cạnh huyền nên IP lớn nhất
IK < IP (1)
Do ∆IMN = ∆IKN (cmt)
⇒ MI = IK (2)
Từ (1) và (2)⇒ MI < IP
c) Xét hai tam giác vuông: ∆IKP và ∆IMQ có:
IM = IK (cmt)
∠PIK = ∠MIQ (đối đỉnh)
∆IKP = ∆IMQ (cạnh góc vuông - góc nhọn kề)
⇒ KP = MQ (hai cạnh tương ứng) (3)
Do ∆IMN = ∆IKN (cmt)
⇒ MN = KN (hai cạnh tương ứng) (4)
Từ (3) và (4) ⇒ KN + KP = MN + MQ
NP = NQ
⇒ ∆NPQ cân tại N
Lại có NI là phân giác của ∠MNP
⇒ NI là phân giác của ∠QNP
⇒ NI cũng là đường cao của ∆NPQ (tính chất tam giác cân)
⇒ ND ⊥ QP
a) Xét ΔMNH vuông tại H và ΔMPH vuông tại H có
MN=MP(ΔMNP cân tại M)
MH chung
Do đó: ΔMHN=ΔMPH(cạnh huyền-cạnh góc vuông)
Suy ra: HN=HP(hai cạnh tương ứng)
b) Xét ΔINH vuông tại I và ΔEPH vuông tại E có
HN=HP(cmt)
\(\widehat{N}=\widehat{P}\)(Hai góc ở đáy của ΔMNP cân tại M)
Do đó: ΔINH=ΔEPH(cạnh huyền-góc nhọn)
Suy ra: HI=HE(Hai cạnh tương ứng)
Xét ΔHIE có HI=HE(cmt)
nên ΔHIE cân tại H(Định nghĩa tam giác cân)
m n i p
Xét t/g MIN và MIP ( có MI chung) i=i=90 độ MN=MP ( tam giác cân)
MIP=MIN ( c,g,c)
có T/G MIP=MIN ( CMT)
suy ra IP=IN