a= 1+2+22+23+...+2100
b=22001+1
so sánh a va b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(A=2+2^2+2^3+2^4+...+2^{100}\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(=3\cdot\left(2+2^3+...+2^{99}\right)⋮3\)
b: Ta có: \(B=4+4^2+4^3+...+4^{2022}\)
\(=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{2021}\left(1+4\right)\)
\(=5\cdot\left(4+4^3+...+4^{2021}\right)⋮5\)
a)12/5<5/2
b)6/15>3/8
c)\(\frac{17}{18}<\frac{18}{19}\)
d) \(\frac{24}{23}\) < \(\frac{23}{22}\)
\(A=1+2+2^2+2^3+...+2^{2021}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2022}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{2022}-1-2-2^2-...-2^{2021}=2^{2022}-1>2^{2021}-1=N\)
\(a=1+2+2^2+...+2^{2021}\\ \Rightarrow2a=2+2^2+2^3+...+2^{2022}\\ \Rightarrow2a-a=\left(2+2^2+2^3+...+2^{2022}\right)-\left(1+2+2^2+...+2^{2021}\right)\\ \Rightarrow a=2^{2022}-1>2^{2021}-1=n\)
\(10A=10.\dfrac{10^{2004}+1}{10^{2005}+1}=\dfrac{10^{2005}+10}{10^{2005}+1}=1+\dfrac{9}{10^{2005}+1}\\ 10B=10.\dfrac{10^{2005}+1}{10^{2006}+1}=\dfrac{10^{2006}+10}{10^{2006}+1}=1+\dfrac{9}{10^{2006}+1}\)
vì \(\dfrac{9}{10^{2005}+1}>\dfrac{9}{10^{2006}+1}\Rightarrow10A>10B\Rightarrow A>B\)
A = 2 + 2^2 + 2^3 + ... + 2^99 + 2^100 (1)
Suy ra :
2A = 2^2 + 2^3 + 2^4 + ... + 2^100 + 2^101 (2)
Lay (2) tru (1) thi Ta có:
A = 2^101 - 2
Ta có
A= 2^101-2
B=2^2001+1
= 2^101*2^1900+1
Ta so sánh -2 và 2^1900+1
Vì 2^1900>-2
Và 1>-2
=> A>B
\(a=1+2+2^2+2^3+...+2^{100}\)
\(2a=2\cdot\left(1+2+2^2+...+2^{100}\right)\)
\(2a=2+2^2+2^3+...+2^{101}\)
\(2a-a=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(a=2^{101}-1\)(1)
\(b=2^{2001}+1\)(2)
Từ (1) và (2)
\(\Rightarrow2^{101}-1< 2^{2001}+1\)hay \(a< b\)
Vậy \(a< b\)