CMR 1 số tự nhiên >10 được viết bởi các chữ số giống nhau ko thể là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu cmr tồn tại 1 số là bội của 19 có tổng các chữ số là 19:
tồn tại số là bội của 19 có tổng các chữ số là 19. VD: 874
a) aaa = 111.a = 37.3.a chia hết cho 37
b) 1ab1 - 1ba1
= 1001 + 10ab - 1001 - 10ba
= 10ab - 10ba
= 10( 10a + b ) - 10 ( 10 b + a )
= 90a - 90b
= 90 ( a-b ) chia hết cho 90.
Ta có: số đó có dạng aaa = a . 111
Mà 111 chia hết cho 37=> aaa chia hết cho 37
b/
Ta có:1ab1-1ba1
= 1000 + 100a + 10b + 1 - 1000 - 100b - 10a - 1
= 90a - 90b = 90(a-b) chia hết cho 90
a) aaa = 111.a = 37.3.a chia hết cho 37
b) 1ab1 - 1ba1 = 1001 + 10ab - 1001 - 10ba = 10ab - 10ba = 10( 10a + b ) - 10 ( 10 b + a ) = 90a - 90b = 90 ( a-b ) chia hết cho 90.
Vì p là tích của n số nguyên tố đầu tiên nên p chia hết cho 2 và p không chia hết cho 4 (*)
Ta chứng minh p+1 là số chính phương:
Giả sử phản chứng p+1 là số chính phương . Đặt p+1 = m² (m∈N)
Vì p chẵn nên p+1 lẻ => m² lẻ => m lẻ.
Đặt m = 2k+1 (k∈N). Ta có m² = 4k² + 4k + 1 => p+1 = 4k² + 4k + 1 => p = 4k² + 4k = 4k(k+1) chia hết cho 4. Mâu thuẫn với (*)
Vậy giả sử phản chứng là sai, tức là p+1 là số chính phương
Ta chứng minh p-1 là số chính phương:
Ta có: p = 2.3.5… là số chia hết cho 3 => p-1 có dạng 3k+2.
Vì không có số chính phương nào có dạng 3k+2 nên p-1 không là số chính phương .
Vậy nếu p là tích n số nguyên tố đầu tiên thì p-1 và p+1 không là số chính phương (đpcm)
Vì p là tích của n số nguyên tố đầu tiên
Nên p=2.3.5.7.11...
vì 3 chia hết cho 3
Nên p chia hết cho 3
=》p-1chia 3 dư 2
Mà số chính phương khi chia cho 3 chỉ dư 0 hoặc 1
=》p-1 không phải là số chính phương.
Giả sử p+1 là số chính phương
Đặt p+1 = a^2
=》p=(a-1).(a+1)...
Vì p chia hết cho 2 nên p là số chẵn
=》a là số lẻ
=》(a-1) và (a+1) là số chẵn
=》(a-1). (a+1).. chia hết cho 2.2=4
=》p chia hết cho 4 (vô lý)
=》điều giảsử là sai
vậy nếu p là tích của n số nguyên tố đầu tiên thì p-1 và p+1 ko phải là số chính phương
ko tận cùng là 2;3;7;8
ko tận cùng là 1 vì 11 chia 4 dư 3
ko tận cùng là 5 vì chia 55 chia 4 dư 3
ko tận cùng là 6 vì 66 chia 4 dư 2
ko tận cùng là 9 vì 99 chia 4 dư 3
vậy số có dạng là a000,a444
với số có dạng là a000 thì a chỉ có thể là 1;3;4;6;7;9
với số có dạng là a444 thì a chỉ có thể là 1;3;4;6;7;9
thử đi, có 6TH thôi=))
2. a và b đồng dư 0;1 mod 4
nên a-b đồng dư 0;1;3 mod 4
mà 2014 đồng dư 2 mod 4
nên ko tồn tại a;b