3+3^2+3^3+...+3^2015+3^2016
giup minh vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{2015}{3^{2015}}-\dfrac{2016}{3^{2016}}\\ 3E=1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{2015}{3^{2014}}-\dfrac{2016}{3^{2015}}\\ 3E+E=\left(1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{2015}{3^{2014}}-\dfrac{2016}{3^{2015}}\right)+\left(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{2015}{3^{2015}}-\dfrac{2016}{3^{2016}}\right)\\ 4E=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{2014}}-\dfrac{1}{3^{2015}}-\dfrac{2016}{3^{2016}}\\ 4E< 1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{2014}}-\dfrac{1}{3^{2015}}\left(1\right)\)
Gọi \(D=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{2015}}\)
\(3D=3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{2013}}-\dfrac{1}{3^{2014}}\\ 3D+D=\left(3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{2013}}-\dfrac{1}{3^{2014}}\right)+\left(1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{2014}}-\dfrac{1}{3^{2015}}\right)\\ 4D=3-\dfrac{1}{3^{2015}}< 3\\ \Rightarrow D< \dfrac{3}{4}\left(2\right)\)
Từ (1) và (2) ta có:
\(4E< \dfrac{3}{4}\\ \Rightarrow E< \dfrac{3}{16}\)
\(B=3+3^2+3^3+...+3^{2014}+3^{2015}\)
=>\(3B=3^2+3^3+3^4+...+3^{2015}+3^{2016}\)
=>\(3B-B=3^2+3^3+...+3^{2015}+3^{2016}-3-3^2-3^3-...-3^{2014}-3^{2015}\)
=>\(2B=3^{2016}-3\)
=>\(2B+3=3^{2016}\) là lũy thừa của 3
\(B=3+3^2+3^3+...+3^{2014}+3^{2015}\)
=>\(3B=3^2+3^3+3^4+...+3^{2015}+3^{2016}\)
=>\(3B-B=3^2+3^3+3^4+...+3^{2015}+3^{2016}-3-3^2-3^3-...-3^{2014}-3^{2015}\)
=>\(2B=3^{2016}-3\)
=>\(2B+3=3^{2016}\) là lũy thừa của 3
Lời giải:
$B=3+3^2+3^3+...+3^{2014}+3^{2015}$
$3B=3^2+3^3+3^4+....+3^{2015}+3^{2016}$
$\Rightarrow 2B=3B-B=3^{2016}-3$
$\Rightarrow 2B+3=3^{2016}$ là lũy thừa của $3$
Ta có :
A=3+32+...+32015
=> 3A-A=32+33+...+32016- (3+32+...+32015)
=>2A=32016-3
lại có: 2A+3=3n
=>32016-3+3=3n
=>32016=3n
=>n=2016
Vậy n=2016
đặt A=3+32+33+34+…+32016
=> 3A = 32+33+34+35+…+32017
=>3A-A =( 32+33+34+35+…+32017)-(3-32-33-34-…-32016)
=> 2A = 32017-3
=> A = (32017-3) : 2
vậy______