K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2020

Đáp án: x < 0; y > 0; z = 0

Giải thích các bước giải:

Nếu x = 0 ⇒ y = 0 ⇒ không thỏa vì chỉ có duy nhất 1 số 0

Nếu y = 0 ⇒ x = 0 ⇒ cũng không thỏa vì chỉ có duy nhất 1 số 0

⇒ z = 0

|x|≥ 0; y² ≥ 0 ⇒ y - z ≥ 0 ⇒ y ≥ z ⇒ y > 0 ⇒ x < 0

3 tháng 1 2016

a=2

b=2

c=1

3 tháng 1 2016

ai tick cho mình tròn 60 vs

13 tháng 5 2016

 

1./ Tích của hai số nguyên a và b là một số dưong khi :
- a > 0 ; b > 0
- a < 0 : b < 0
13 tháng 5 2016

Tích của hai sô nguyên a và là một số dương khi 

-a<0 và b<0

-a>0 và b>0

29 tháng 3 2017

=>a+1=2

    a    =2-1

    a     =1

=>3=b+1

     b=3-1

     b=2

tk nha

18 tháng 12 2016

Đặt \(\hept{1\begin{cases}a+b=x\\c+d=y\end{cases}}\)thì ra cần chứng minh

\(xy+4\ge2\left(x+y\right)\)

\(\Leftrightarrow\left(x-2\right)\left(y-2\right)\ge0\)

Mà ta có

\(\hept{\begin{cases}x=a+b\ge2\sqrt{ab}=2\\y=c+d\ge2\sqrt{cd}=2\end{cases}}\)

\(\Rightarrow\)ĐPCM

18 tháng 12 2016

 bđt cô-si dc k  

24 tháng 12 2020

nhờ mn giúp mk bài này vs ạ

mk đang cần gấp !

cảm ơn mn nhiều

NV
25 tháng 12 2020

Đặt \(\left(\sqrt[3]{x};\sqrt[3]{y};\sqrt[3]{z}\right)=\left(a;b;c\right)\) \(\Rightarrow a^6+b^6+c^6=3\)

\(a^6+a^6+a^6+a^6+a^6+1\ge6a^5\)

Tương tự: \(5b^6+1\ge6b^5\) ; \(5c^6+1\ge6c^5\)

Cộng vế với vế: \(18=5\left(a^6+b^6+c^6\right)+3\ge6\left(a^5+b^5+c^5\right)\)

\(\Rightarrow3\ge a^5+b^6+b^5\)

BĐT cần chứng minh: \(\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}\ge a^3b^3+b^3c^3+c^3a^3\) 

Ta có:

\(\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}\ge\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\ge a+b+c\) (1)

Mà \(3\left(a+b+c\right)\ge\left(a^5+b^5+c^5\right)\left(a+b+c\right)\ge\left(a^3+b^3+c^3\right)^2\ge3\left(a^3b^3+b^3c^3+c^3a^3\right)\)

\(\Rightarrow a+b+c\ge a^3b^3+b^3c^3+c^3a^3\) (2)

Từ (1);(2) \(\Rightarrow\) đpcm

1 tháng 12 2021

MIK CẦN GẤP TRƯỚC 4h T_T