K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2018

2n² - n + 2. │ 2n + 1 
2n² + n....... ├------------ 
------------------ I n - 1 
.......-2n + 2 
.......-2n - 1 
_____________ 

Để chia hết thì: 3 phai chia hết cho ( 2n + 1) 

hay (2n + 1) la ước của 3 
Ư(3) = {±1 ; ±3} 
______________________________ 
+) 2n + 1 = 1 <=> n = 0 
+) 2n + 1 = -1 <=> n = -1 
+) 2n + 1 = 3 <=> n = 1 
+) 2n + 1 = -3 <=> n = -2 


Vậy n ∈{0;-2 ; ±1}

tk cho mk nha $_$

15 tháng 1 2018

2n^2-n+2 chia hết cho 2n+1

<=> (2n^2+n)-(2n+1)+3 chia hết cho 2n+1

<=> (2n+1).(n-1)+3 chia hết cho 2n+1

<=> 3 chia hết cho 2n+1 [ vì (2n+1).(n-1) chia hết cho 2n+1 ]

Đến đó bạn dùng quan hệ ước bội mà giải nha

Tk mk nha

9 tháng 5 2017

Cách 1: Thực hiện phép chia 2n2 – n + 2 cho 2n + 1 ta có:

Giải bài 83 trang 33 Toán 8 Tập 1 | Giải bài tập Toán 8

2n2 – n + 2 chia hết cho 2n + 1

⇔ 3 ⋮ (2n + 1) hay (2n + 1) ∈ Ư(3)

⇔ 2n + 1 ∈ {±1; ±3}

   + 2n + 1 = 1 ⇔ 2n = 0 ⇔ n = 0

   + 2n + 1 = -1 ⇔ 2n = -2 ⇔ n = -1

   + 2n + 1 = 3 ⇔ 2n = 2 ⇔ n = 1

   + 2n + 1 = -3 ⇔ 2n = -4 ⇔ n = -2.

Vậy n ∈ {-2; -1; 0; 1.}

Cách 2:

Ta có:

Giải bài 83 trang 33 Toán 8 Tập 1 | Giải bài tập Toán 8

2n2 – n + 2 chia hết cho 2n + 1

Giải bài 83 trang 33 Toán 8 Tập 1 | Giải bài tập Toán 8

⇔ 2n + 1 ∈ Ư(3) = {±1; ± 3}.

   + 2n + 1 = 1 ⇔ 2n = 0 ⇔ n = 0

   + 2n + 1 = -1 ⇔ 2n = -2 ⇔ n = -1

   + 2n + 1 = 3 ⇔ 2n = 2 ⇔ n = 1

   + 2n + 1 = -3 ⇔ 2n = -4 ⇔ n = -2.

Vậy n ∈ {-2; -1; 0; 1.}

Chú ý: Đa thức A chia hết cho đa thức B khi phần dư của phép chia bằng 0.

2 tháng 7 2020

Thực hiện phép chia 2n2 – n + 2 cho 2n + 1 ta có:

2n^2 - n + 2 2n + 1 n - 1 _ 2n^2 + n -2n + 2 _ -2n - 1 3

2n2 – n + 2 chia hết cho 2n + 1

<=> 3 \(⋮\)( 2n + 1 ) hay ( 2n + 1 ) \(\in\) Ư(3)

<=> 2n + 1 \(\in\) {\(\pm\)1; \(\pm\)3 }

   + 2n + 1 = 1 <=> 2n = 0 <=> n = 0

   + 2n + 1 = -1 <=> 2n = -2 <=> n = -1

   + 2n + 1 = 3 <=> 2n = 2 <=> n = 1

   + 2n + 1 = -3 <=> 2n = -4 <=> n = -2.

Vậy n \(\in\) { -2 ; -1 ; 0 ; 1 }

15 tháng 12 2016

làm câu

AH
Akai Haruma
Giáo viên
2 tháng 1 2024

1/

$10n+4\vdots 2n+7$

$\Rightarrow 5(2n+7)-31\vdots 2n+7$

$\Rightarrow 31\vdots 2n+7$

$\Rightarrow 2n+7\in Ư(31)$

$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$

$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$

AH
Akai Haruma
Giáo viên
2 tháng 1 2024

2/

$5n-4\vdots 3n+1$

$\Rightarrow 3(5n-4)\vdots 3n+1$

$\Rightarroq 15n-12\vdots 3n+1$

$\Rightarrow 5(3n+1)-17\vdots 3n+1$

$\Rightarrow 17\vdots 3n+1$

$\Rightarrow 3n+1\in Ư(17)$

$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$

$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$

Do $n$ nguyên nên $n\in\left\{0; -6\right\}$

 

3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm

15 tháng 12 2016

Đặt \(Q=\frac{2n^2+7n-2}{2n-1}\)

Ta có \(\frac{2n^2+7n-2}{2n-1}=\frac{n\left(2n-1\right)+4\left(2n-1\right)+2}{2n-1}=n+4+\frac{2}{2n-1}\)

\(Q\in Z\Leftrightarrow\frac{2n^2+7n-2}{2n-1}\in Z\Leftrightarrow\frac{2}{2n-1}\in Z\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Sau đó tìm n

 

15 tháng 12 2016

bạn chắc câu này đúng chứ

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Bài 1:

\(=-5^{22}+222+[-122-(100-5^{22})+2022]\)

\(=-5^{22}+222-122-100+5^{22}+2022\\ =(-5^{22}+5^{22})+(222-122-100)+2022\\ =0+0+2022=2022\)

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Bài 2:

$2n^2+n-6\vdots 2n+1$

$\Rightarrow n(2n+1)-6\vdots 2n+1$

$\Rightarrow 6\vdots 2n+1$

$\Rightarrow 2n+1\in Ư(6)$

Mà $2n+1$ lẻ nên $2n+1\in \left\{\pm 1; \pm 3\right\}$

$\Rightarrow n\in \left\{0; -1; 1; -2\right\}$

15 tháng 10 2015

Ta có :

\(2n^2-n+2=-n.\left(-2n+1\right)+2\)

Vì -2n + 1 chia hết cho 2n + 1 nên -n.(-2n + 1) cũng chia hết cho 2n + 1

=> 2 chia hết cho 2n + 1

Vì n thuộc Z nên 2n + 1 thuộc {-2;-1;1;2}

=> n thuộc {-1; 0}

15 tháng 11 2015

Ta có: \(2n^2-n-1=2n^2+3n-4n-6+5=n\left(2n+3\right)-2\left(2n+3\right)+5\)

Vì \(n\left(2n+3\right)\)và \(-2\left(2n+3\right)\)chia hết cho \(2n+3\) nên để \(2n^2-n-1\)chia hết cho \(2n+3\) thì \(5\)phải chia hết cho \(2n+3\), tức là \(2n+3\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Với  \(2n+3=1\)thì \(n=-1\)

Với  \(2n+3=-1\) thì \(n=-2\)

Với  \(2n+3=5\)thì \(n=1\)

Với  \(2n+3=-5\) thì \(n=-4\)

Vậy, để đa thức \(2n^2-n-1\) chia hết cho đa thức \(2n+3\) thì \(n=\left\{-2;-1;1;-4\right\}\) và  \(n\in Z\)

 

a: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{0;-1;1;-2\right\}\)

b: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{3;1;5;-1\right\}\)

c: \(\Leftrightarrow10n^2-15n+8n-12+7⋮2n-3\)

\(\Leftrightarrow2n-3\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{2;1;5;-2\right\}\)

d: \(\Leftrightarrow2n^2-n+4n-2+5⋮2n-1\)

\(\Leftrightarrow2n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{1;0;3;-2\right\}\)