Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai tg AMC và tg ABC có chung đường cao từ C->AB nên
\(\dfrac{S_{AMC}}{S_{ABC}}=\dfrac{AM}{AB}=\dfrac{1}{3}\Rightarrow S_{AMC}=\dfrac{1}{3}xS_{ABC}\)
Hai tg AMN và tg AMC có chung đường cao từ A->CM nên
\(\dfrac{S_{AMN}}{S_{AMC}}=\dfrac{MN}{MC}=\dfrac{1}{2}\Rightarrow S_{AMN}=\dfrac{1}{2}xS_{AMC}=\dfrac{1}{2}x\dfrac{1}{3}xS_{ABC}=\dfrac{1}{6}xS_{ABC}\)
\(S_{BMC}=S_{ABC}-S_{AMC}=S_{ABC}-\dfrac{1}{3}xS_{ABC}=\dfrac{2}{3}xS_{ABC}\)
Hai tg BMN và tg BMC có chung đường cao từ B->MC nên
\(\dfrac{S_{BMN}}{S_{BMC}}=\dfrac{MN}{MC}=\dfrac{1}{2}\Rightarrow S_{BMN}=\dfrac{1}{2}xS_{BMC}=\dfrac{1}{2}x\dfrac{2}{3}xS_{ABC}=\dfrac{1}{3}xS_{ABC}\)
\(S_{ANB}=S_{AMN}+S_{BMN}=\dfrac{1}{6}xS_{ABC}+\dfrac{1}{3}xS_{ABC}=\dfrac{1}{2}xS_{ABC}=40cm^2\)
Trong tam giac AMB kẻ đường cao AH .Đường cao AH cũng là đường cao trong tam giác ABC
\(S_{AMB}=\frac{1}{2}.AH.MB\)
\(\Rightarrow AH=\frac{2.S_{AMB}}{MB}\)
Diện tích tam giác ABC
\(S_{ABC}=\frac{1}{2}.AH.BC=\frac{1}{2}.\frac{2.S_{AMB}}{MB}.\left(MB+MC\right)\)
\(=\frac{S_{AMB}}{\frac{1}{2}.MC}.\left(\frac{1}{2}.MC+MC\right)=3.S_{AMB}=3.3,5=10,5cm^2\)
Bạn tự vẽ hình nha. Nhớ nối thêm đoạn MC
Kí hiệu S là diện tích
Ta có
SAMN = 3/4 SAMC ( vì chung chiều cao từ M đến AC đáy AN = 3/4 SAMC )
SAMC = 90 : 3 x 4 = 120 cm2
SAMC = 2/3 SABC ( vì chung chiều cao từ C đến AB Đáy AM = 2/3 AB )
SABC = 120 : 2 x 3 = 180 cm2
Đáp số 180 cm2
chia 4
90/4 = 22,5