Cho hình thang ABCD có góc B+góc D =180, CD=CB.trên tia đối tia DB lấy E sao cho DE=AB.
- C/m tam giác ABC=tam giác EDC
- C/m AD là tia phân giác góc A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a,xét tam giác ABC và tam giác EDC có:
AB=DE(gt)
DC=DC(gt)
góc EDC=ABC=(180 độ-ADC)
=>tam giác ABC=EDC(c.g.c)
b,tam giác ABC=EDC
=.AC=EC
=>tam giác ACE cân tại C
=> góc DAC=DEC(1)
Mặt khác 2 tam giác trên bằng nhau
=>DAC=DEC(2)
Từ (1) và (2)=>DAC=BAC
=> góc AC là tia pg của A
---------------------------đợi mik nghiên cứu bài 2 đã chà nha học tốt---------------------------------
AB//CD=>A+B=180 độ (hai góc trong cùng phía)(1)
A-D=20 độ(2)
Lấy (1)+(2)=>A+D+A-D=180 độ +20=> 2A=200=>A=100 độ
A+B=180 độ=>D=180 độ=>D=180 -A=180-100=80 độ
AB//CD>B+C=180 độ (hai góc trong cùng phía)
Hay AC+C=180 độ=>3C=180 độ =>C=60 độ
B+C=180 độ=>B=180 -C=180-60=120 độ
--------------------------------------------học tốt-------------------------------
Bạn tự vẽ hình nhé!
a, (Mk nghĩ đề là góc B+D=180o)
Xét tam giác ABC và EDC có:
AB=DE (gt)
DC=BC (gt)
góc EDC=ABC = (180o- ADC)
=> tam giác ABC=EDC (c.g.c)
b, Tam giác ABC=EDC => AC=EC
=> tam giác ACE cân tại C=> góc DAC=DEC (1)
Mặt khác hai tam giác trên bằng nhau => góc DEC=BAC (2)
Từ (1) và (2) => góc DAC=BAC
=> AC là pg góc A
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
a, Ta có:
\(\widehat{ADC}+\widehat{ABC}=180^o\left(1\right)\)
\(\widehat{ADC}+\widehat{EDC}=180^o\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{ABC}=\widehat{EDC}\) (Cùng bù \(\widehat{ADC}\))
Ta xét hai tam giác ABC và EDC:
BC = DC (giả thiết)
AB = DE (giả thiết)
\(\widehat{ABC}=\widehat{EDC}\) (chứng minh trên)
\(\Rightarrow\Delta ABC=\Delta DEC\left(c.g.c\right)\)
b) Ta có: Tam giác ABC = tam giác EDC (chứng minh trên)
=> AC = EC (Hai cạnh tương ứng bằng nhau)
=> Tam giác AEC cân tại A
\(\Rightarrow\widehat{CAE}=\widehat{CEA}\left(3\right)\)
Ta có: \(\widehat{CEA}=\widehat{CAB}\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\widehat{CAE}=\widehat{CAB}\)
=> AC là tia phân giác của \(\widehat{DAB}\)
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đó: ΔABD=ΔAED
=>DB=DE
b: Xét ΔDBF và ΔDEC có
góc DBF=góc DEC
DB=DE
góc BDF=góc EDC
Do đo: ΔDBF=ΔDEC
c:ΔDBF=ΔDEC
nên góc BDF=góc EDC
=>góc BDF+góc BDE=180 độ
=>E,D,F thẳng hàng
1,
a, Áp dụng định lý Pi-ta-go vào \(\Delta ABC\)
\(BC=\sqrt{8^2+6^2}\)
\(=10cm\)
b, Xét chung \(\Delta BEC\)và \(\Delta DEC\)
\(EC\)chung
\(BC=CD\hept{\begin{cases}\Delta BEC\\\Delta DEC\end{cases}}\)
\(G=\widehat{G}\)
\(\Delta ABC\)và \(\Delta ACD\)có \(\widehat{A_1}=\widehat{A_2};AB=AD;AC\)chung
\(\Rightarrow\Delta ABC=\Delta ACD\Rightarrow BC=CD;\widehat{G}=\widehat{G_2}\)
P/s: Dựa vào đây mà làm
Bài 2:
a: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{CFE}=60^0\\\widehat{AEB}=\widehat{CEF}=60^0\end{matrix}\right.\)
=>ΔCFE đều
b: Xét tứ giác ABCD có
\(\widehat{BAC}=\widehat{BDC}=90^0\)
Do đó: ABCD là tứ giác nội tiếp