Tính tổng
S= 1+ 3 + 32 +... + 318 + 319
Giải giúp mk vs nha!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+\dfrac{1}{7\cdot9}-\left(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+\dfrac{1}{8\cdot10}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}\right)-\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+\dfrac{2}{8\cdot10}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{9}\right)-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{10}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{8}{9}-\dfrac{1}{2}\cdot\dfrac{2}{5}\)
\(=\dfrac{4}{9}-\dfrac{1}{5}\)
\(=\dfrac{11}{45}\)
đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+...+\frac{1}{256}\)
=> A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+....+\frac{1}{2^8}\)
=> 2A=\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^7}\)
=> 2A-A=\(\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^7}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^8}\right)\)
=> A=\(1-\frac{1}{2^8}\)
\(\text{Theo bài ra ta có:}\hept{\begin{cases}f\left(1\right)=a+b+c=4\\f\left(2\right)=4a+2b+c=7\\f\left(-3\right)=9a-3b+c=32\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b+c=4\\3a+b=3\\8a-4b=28\end{cases}\Leftrightarrow\hept{\begin{cases}a+b+c=4\\3a+b=3\\2a-b=7\end{cases}\Leftrightarrow}}\)
\(\hept{\begin{cases}a+b+c=4\\3a+b=3\\5a=10\end{cases}\Leftrightarrow\hept{\begin{cases}a+b+c=4\\6+b=3\\a=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=-3\\c=5\end{cases}}}\)
\(\Rightarrow y=2x^2-3x+5\)
Đặt A = 1 + 2 + 4 + 8 + ..... + 1024
=> 2A = 2 + 4 + 8 + ..... + 2048
=> 2A - A = 2048 - 1
=> A = 2047
Đặt A = 1 + 2 + 4 + 8 + ... + 1024
=> 2A = 2 + 4 + 8 + ... + 2048
=> 2A - A = 2048 - 1
=> 2A = 2047
S= 1+ 3 + 32 +... + 318 + 319
3S= 3+32+33+... + 319+ 320
3S-S= ( 3+32+33+... + 319+ 320)-(1+ 3 + 32 +... + 318 + 319)
2S= 320-1
S= 320-1/2
Có : 3S = 3+3^2+....+3^20
2S = 3S - S = (3+3^2+....+3^20)-(1+3+3^2+....+3^19) = 3^20-1
=> S = (3^20-1)/2 = 1743392200
Tk mk nha