a.(x-2) . (y + 1) = 5
b.xy + 4x -2y = 25
c.(x-1) . (y+2) > 0
d.(x+3) . (y-5) < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(8\left(x-2\right)-2\left(3x-4\right)=2\)
\(\Rightarrow2\left[4\left(x-2\right)-\left(3x-4\right)\right]=2\)
\(\Rightarrow4\left(x-2\right)-3x+4=0\)
\(\Rightarrow4x-8-3x+4=0\)
\(\Rightarrow x-4=0\)
\(\Rightarrow x=4\)
b) \(10\left(3x-2\right)-3\left(5x+2\right)+5\left(11-4x\right)=25\)
\(\Rightarrow5\left[2\left(3x-2\right)+11-4x\right]-3\left(5x+2\right)=25\)
\(\Rightarrow5\left(6x-4+11-4x\right)-3\left(5x+2\right)=25\)
\(\Rightarrow5\left(2x+7\right)-3\left(5x+2\right)=25\)
\(\Rightarrow10x+35-15x-6=25\)
\(\Rightarrow-5x+29=25\)
\(\Rightarrow-5x=25-29\)
\(\Rightarrow-5x=-4\)
\(\Rightarrow x=\dfrac{4}{5}\)
c) \(2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+4=0\)
\(\Rightarrow2x^2+2x-x^3-2x^2+x^3-x+4=0\)
\(\Rightarrow x+4=0\)
\(\Rightarrow x=-4\)
d) \(4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)
\(\Rightarrow12x^2+8x-12x^2-30x+21x-21=0\)
\(\Rightarrow-x-21=0\)
\(\Rightarrow x=-21\)
Bài 2:
a) \(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y\)
\(P=8x^2y-6y^2-9x^2y+12y^2\)
\(P=-x^2y+6y^2\)
Thay x = -1 ; y = 2 vào P ta được
\(P=-\left(-1\right)^2.2+6.2^2\)
\(P=-2+24=22\)
b) \(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)\)
\(Q=20x^3-12x^2y-4x^3-x^2y\)
\(Q=16x^3-13x^2y\)
Thay x = -1 ; y = 2 vào Q ta được
\(Q=16\left(-1\right)^3-13\left(-1\right)^2.2\)
\(Q=-16-26\)
\(Q=-42\)
c) \(H=x\left(x^3-y\right)+x^2\left(y-x^2\right)-y\left(x^2-3x\right)\)
\(H=x^4-xy+x^2y-x^4-x^2y+3xy\)
\(H=2xy\)
Thay x = 1/4 ; y = 2012 vào H ta được
\(H=2.\dfrac{1}{4}.2012\)
\(H=1006\)
1.a)\(8\left(x-2\right)-2\left(3x-4\right)=2\)
\(\Leftrightarrow8x-16-6x+8=2\)
\(\Leftrightarrow2x-8=2\Leftrightarrow2x=10\Leftrightarrow x=5\)
b)\(10\left(3x-2\right)-3\left(5x+2\right)+5\left(11-4x\right)=25\)
\(\Leftrightarrow30x-20-15x-6+55-20x=25\)
\(\Leftrightarrow-5x+29=25\Leftrightarrow-5x=-4\Leftrightarrow x=\dfrac{4}{5}=0,8\)
\(c)2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+4=0\)
\(\Leftrightarrow2x^2+2x-x^3-2x^2+x^3-x+4=0\)
\(\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
\(d)4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)
\(\Leftrightarrow12x^2+8x-12x^2-30x+21x-21=0\)
\(\Leftrightarrow-x-21=0\Leftrightarrow-x=21\Leftrightarrow x=-21\)
2.
a)\(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y\)
\(\Leftrightarrow8x^2y-6y^2-9x^2y-12y^2\)
\(\Leftrightarrow x^2y-18y^2\)
tại x=-1 , y=2
ta có:\(x^2y-18y^2=\left(-1\right)^2.2-18.2^2=2-72=-70\)
vậy \(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y=-70\) tại x=-1,y=2
b)\(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)\)
\(\Leftrightarrow20x^3-12x^2y-4x^3-x^2y\)
\(\Leftrightarrow17x^3-13x^2y\)
tại x=-1,y=2
ta có:\(17x^3-13x^2y=17\left(-1\right)^3-13\left(-1\right)^2.2=-17-26=-43\)
vậy \(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)=-43\)
c)\(H=x\left(x^3-y\right)+x^2\left(y-x^2\right)-y\left(x^2-3x\right)\)
\(\Leftrightarrow x^4-xy+x^2y-x^3-x^2y+3xy\)
\(\Leftrightarrow x^4+2xy-x^3\)
tại x=1/4 và y=2012
ta có:\(x^4+2xy-x^3=\left(\dfrac{1}{4}\right)^4+2.\dfrac{1}{4}.2012-\left(\dfrac{1}{4}\right)^3\approx1006\)
Bài 4 :
a) \(x^3+x^2y-xy^2-y^3=x^2\left(x+y\right)-y^2\left(x+y\right)=\left(x^2-y^2\right)\left(x+y\right)=\left(x-y\right)\left(x+y\right)^2\)
b)\(x^2y^2+1-x^2-y^2=\left(x^2y^2-x^2\right)-\left(y^2-1\right)=x^2\left(y^2-1\right)-\left(y^2-1\right)=\left(x^2-1\right)\left(y^2-1\right)=\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)\)
c) \(x^2-y^2-4x+4y=\left(x^2-y^2\right)-\left(4x-4y\right)=\left(x-y\right)\left(x+y\right)-4\left(x-y\right)=\left(x-y\right)\left(x+y-4\right)\)
d)
\(x^2-y^2-2x-2y=\)\(\left(x^2-y^2\right)-\left(2x+2y\right)=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(x-y-2\right)\)
e) Trùng câu d
f) \(x^3-y^3-3x+3y=\left(x-y\right)\left(x^2-xy+y^2\right)-3\left(x-y\right)=\left(x-y\right)\left(x^2-xy+y^2-3\right)\)
Bài 5:
a) \(x^3-x^2-x+1=0\)
\(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy ...
b) Sửa đề : \(\left(2x-3\right)^2-\left(4x^2-9\right)=0\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x-3-2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(-6\right)=0\)\
\(\Leftrightarrow2x-3=6\)
\(\Leftrightarrow x=\frac{9}{2}\)
vậy........
c) \(x^4+2x^3-6x-9=0\)
\(\Leftrightarrow\left(x^4-9\right)+\left(2x^3-6x\right)=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)+2x\left(x^2-3\right)=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow x^2-3=0\Leftrightarrow x^2=3\Leftrightarrow x=\pm\sqrt{3}\)
Vậy
d) \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Vậy ........
a) 5xy ( x - y ) - 2x + 2y
= 5xy ( x - y ) - 2 ( x - y )
= ( x - y ) ( 5xy - 2 )
b) 6x-2y-x(y-3x)
= 2 ( y - 3x ) - x ( y - 3x )
= ( y - 3x ( ( 2 - x )
c) x2 + 4x - xy-4y
= x ( x + 4 ) - y ( x + 4 )
( x + 4 ) ( x - y )
d) 3xy + 2z - 6y - xz
= ( 3xy - 6y ) + ( 2z - xz )
= 3y ( x - 2 ) + z ( x - 2 )
= ( x - 2 ) ( 3y + z )
a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)
b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)
c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)
d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)
11)
a,4-9x^2=0
(2-3x)(2+3x)=0
2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3
b,x^2 +x+1/4=0
(x+1/2)^2 =0
x+1/2=0
x=-1/2
c,2x(x-3)+(x-3)=0
(x-3)(2x+1)=0
x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2
d,3x(x-4)-x+4=0
3x(x-4)-(x-4)=0
(x-4)(3x-1)=0
x-4=0=>x=4 hoặc 3x-1=0=>x=1/3
e,x^3-1/9x=0
x(x^2-1/9)=0
x(x+1/3)(x-1/3)=0
x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3
f,(3x-y)^2-(x-y)^2 =0
(3x-y-x+y)(3x-y+x-y)=0
2x(4x-2y)=0
4x(2x-y)=0
x=0hoặc 2x-y=0=>x=y/2
Bài 2:
\(A=x^2+4y^2-2x+10-4xy-4y\)
\(=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
Thay x + 2y = 5 vào biểu thức A ta được: \(A=5^2-2.5+10=25\)
\(B=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)\left(y-1\right)+y^2-2y+1\)
\(=x^2+4xy+4y^2-2xy+2x-4y^2+4y+y^2-2y+1\)
\(=x^2+2xy+y^2+2x+2y+1\)
\(=\left(x+y\right)^2+2\left(x+y\right)+1\)
Thay x + y = 5 vào biểu thức B ta được: \(B=5^2+2.5+1=25+10+1=36\)
\(C=x^2-y^2-4x=\left(x^2-4x+4\right)-y^2-4\)
\(=\left(x-2\right)^2-y^2-4\) \(=\left(x-y-2\right)\left(x-2+y\right)-4\)
Thay x + y = 2 vào C ta được: \(C=\left(x-2-y\right)\left(2-2\right)-4=0-4=-4\)
\(D=x^2+y^2+2xy-4x-4y-3\)
\(=\left(x+y\right)^2-4\left(x+y\right)-3\) Thay x + y = 4 vào D ta được:
\(D=4^2-4.4-3=16-16-3=-3\)
Bài 3:
a) \(N=-9x^2+12x-5=-\left(9x^2-12x+4\right)-1\)
\(=-\left(3x-2\right)^2-1\)
Do \(\left(3x-2\right)^2\ge0\) nên \(-\left(3x-2\right)^2-1< 0\)
Vậy N < 0
b) ghi đề cẩn thận lại đi, mk k hiểu
\(\left|x-y-2\right|+\left|y+3\right|=0\)
\(\left\{{}\begin{matrix}\left|x-y-2\right|\ge0\forall x;y\\\left|y+3\right|\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left|x-y-2\right|+\left|y+3\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|x-y-2\right|=0\Rightarrow x-\left(-3\right)-2=0\Rightarrow x+1=0\Rightarrow x=-1\\\left|y+3\right|=0\Rightarrow y+3=0\Rightarrow y=-3\end{matrix}\right.\)
\(\left|x-2007\right|+\left|y-2008\right|=0\)
\(\left\{{}\begin{matrix}\left|x-2007\right|\ge0\forall x\\\left|y-2008\right|\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left|x-2007\right|+\left|y-2008\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|x-2007\right|=0\Rightarrow x-2007=0\Rightarrow x=2007\\\left|y-2008\right|=0\Rightarrow y-2008=0\Rightarrow y=2008\end{matrix}\right.\)
\(\left|\dfrac{2}{3}-\dfrac{1}{2}+\dfrac{3}{4}x\right|+\left|1,5-\dfrac{11}{17}+\dfrac{23}{13}y\right|=0\)
\(\left\{{}\begin{matrix}\left|\dfrac{2}{3}-\dfrac{1}{2}+\dfrac{3}{4}x\right|\ge0\forall x\\\left|1,5-\dfrac{11}{17}+\dfrac{23}{13}y\right|\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left|\dfrac{2}{3}-\dfrac{1}{2}+\dfrac{3}{4}x\right|+\left|1,5-\dfrac{11}{17}+\dfrac{23}{13}x\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|\dfrac{2}{3}-\dfrac{1}{2}+\dfrac{3}{4}x\right|=0\Rightarrow\dfrac{1}{6}+\dfrac{3}{4}x=0\Rightarrow\dfrac{3}{4}x=-\dfrac{1}{6}\Rightarrow x=-\dfrac{2}{9}\\\left|1,5-\dfrac{11}{17}+\dfrac{23}{13}x\right|=0\Rightarrow\dfrac{29}{34}+\dfrac{23}{13}x=0\Rightarrow\dfrac{23}{13}x=-\dfrac{29}{34}\Rightarrow x=-\dfrac{377}{782}\end{matrix}\right.\)
\(\left|x-y-5\right|+\left|y-2\right|\le0\)
\(\left\{{}\begin{matrix}\left|x-y-5\right|\ge0\forall x;y\\\left|y-2\right|\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left|x-y-5\right|+\left|y-2\right|\ge0\)
Lúc này ta có:
\(\left\{{}\begin{matrix}\left|x-y-5\right|+\left|y-2\right|\le0\\\left|x-y-5\right|+\left|y-2\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x-y-5\right|+\left|y-2\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-y-5\right|=0\Rightarrow x-2-5=0\Rightarrow x=7\\\left|y-2=0\right|\Rightarrow y=2\end{matrix}\right.\)
\(\left|3x+2y\right|+\left|4y-1\right|\le0\)
\(\left\{{}\begin{matrix}\left|3x+2y\right|\ge0\forall x;y\\ \left|4y-1\right|\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left|3x+2y\right|+\left|4y-1\right|\ge0\)
Lúc này ta có:
\(\left\{{}\begin{matrix}\left|3x+2y\right|+\left|4y-1\right|\ge0\\\left|3x+2y\right|+\left|4y-1\right|\le0\end{matrix}\right.\)
\(\Rightarrow\left|3x+2y\right|+\left|4y-1\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x+2y\right|=0\Rightarrow3x+\dfrac{1}{2}=0\Rightarrow3x=-\dfrac{1}{2}\Rightarrow x=-\dfrac{1}{6}\\\left|4y-1\right|=0\Rightarrow4y=1\Rightarrow y=\dfrac{1}{4}\end{matrix}\right.\)