K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2019

a, P= \(\frac{x\left(x+1\right)}{\left(x-1\right)^2}\): ( \(\frac{x+1}{x}\)\(\frac{1}{x-1}\)\(\frac{x^2-2}{x\left(x-1\right)}\)

P= \(\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)\(\frac{\left(x+1\right)\left(x-1\right)+x-x^2+2}{x\left(x-1\right)}\)

P= \(\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)\(\frac{x\left(x-1\right)}{x^2-1+x-x^2+2}\)

P=  \(\frac{x^2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}\)

P= \(\frac{x^2}{x-1}\)( đkxđ x khác 1)

b, để P=\(\frac{-1}{2}\)\(\Rightarrow\)\(\frac{x^2}{x-1}\)=\(\frac{-1}{2}\)\(\Rightarrow\)1-x  =  2x\(^2\)

\(\Rightarrow\)2x\(^2\)+ x-1 = 0\(\Rightarrow\)2x\(^2\)- 2x +x - 1   =0\(\Rightarrow\)(x -1 ) (2x + 1) = 0

\(\Rightarrow\)\(\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}}\)\(\orbr{\begin{cases}x=1\left(ktm\right)\\x=\frac{-1}{2}\left(tm\right)\end{cases}}\)

vậy x= \(\frac{-1}{2}\)

c, tớ chịu thôi mà tớ mỏi tay lắm òi. k cho tớ nhé

19 tháng 2 2020

Câu 1 :

a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)

b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)

\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)

\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)

\(\Leftrightarrow2x^2+8x+6=0\)

\(\Leftrightarrow x^2+4x+4-1=0\)

\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)

Vậy : \(x=-3\) thì P = 1.

31 tháng 3 2020

a) ĐKXĐ: x khác +-1

b) \(\frac{x+1}{x-1}+\frac{x-2}{x+1}-\frac{2x^2+x+5}{x^2-1}\)

\(=\frac{x+1}{x-1}+\frac{x-2}{x+1}-\frac{2x^2+x+5}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x^2+x+5}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{\left(x+1\right)^2+\left(x-2\right)\left(x-1\right)-\left(2x^2+x+5\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=-\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=-\frac{2}{x-1}\)

16 tháng 12 2018

\(a)A=(\frac{x}{(x+6)(x+6)}-\frac{x-6}{x(x+6)})\cdot\frac{x(x+6)}{2x-6}+\frac{x}{x-6}\)

\(A=\frac{x^2-(x-6)^2}{x(x+6)(x-6)}\cdot\frac{x(x+6)}{2x-6}-\frac{x}{x-6}=\frac{(x-x+6)(x+x-6)}{(x-6)(2x-6)}-\frac{x}{x-6}\)

\(=\frac{6(2x-6)}{(x-6)(2x-6)}-\frac{x}{x-6}=\frac{6}{(x-6)}-\frac{x}{x-6}\cdot\frac{6-x}{x-6}=-1\)

\(b)\text{A luôn = -1 với mọi x}\)

8 tháng 2 2020

a) 

Rút gọn :

\(P=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x}\right)\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{\left(x+1\right)\left(x-1\right)+x+\left(2-x^2\right)\left(x-1\right)}{x\left(x-1\right)}\right)\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{x^2-1+x+2x-2-x^3+x^2}{x\left(x-1\right)}\right)\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{-x^3+2x^2+3x-3}{x\left(x-1\right)}\right)\)

8 tháng 2 2020

chú phải chia nó ra luôn chứ?

18 tháng 5 2018

Bài 1 : Điều kiện xác định : \(x\ne\pm1\)

\(K=\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{x^2-1}{x^2}\)

\(K=\frac{2}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{x^2}=\frac{2}{x^2}\)

Nhận thấy giá trị của x càng tăng thì giá trị của M càng giảm

mặt khác , giá trị của x lại không giảm quá 0 nên ta không thể nào xác định được giá trị lớn nhất của K