Tìm x,y biết rằng|x-5|+|y+3|=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x(y+3)+2(y+3)=0
(x+2).(y+3)=0
x+2=0 hoặc y+3=0
x=-2 hoặc y=-3 thỏa man:|-2|+|-3|=5
\(\left(x-\frac{1}{5}\right)\left(y+\frac{1}{2}\right)\left(z-3\right)=0\)
=> Có 3 trường hợp
1) x - 1/5 = 0 => x = 1/5
2) y + 1/2 = 0 => y = -1/2
3) z - 3 = 0 => z = 3
Ta có :
Với x = 1/5
=> 1/5 + 1 = y + 2 = z + 3
=> y = -4/5 ; z = -9/5
Với y = -1/2
=> x + 1 = -1/2 + 2 = z + 3
=> x = 1/2 ; z = -3/2
Với z = 3
=> x + 1 = y + 2 = 3 + 3
=> x = 5 ; y = 4
Ta có: \(\left(x-\dfrac{1}{5}\right)^{2004}\ge0\forall x\)
\(\left(y+\dfrac{2}{5}\right)^{100}\ge0\forall y\)
\(\left(z-3\right)^{678}\ge0\forall z\)
Do đó: \(\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+\dfrac{2}{5}\right)^{100}+\left(z-3\right)^{678}\ge0\forall x,y,z\)
Dấu '=' xảy ra khi \(\left(x,y,z\right)=\left(\dfrac{1}{5};\dfrac{-2}{5};3\right)\)
\(\hept{\begin{cases}x\left(x+y+z\right)=-5\\y\left(x+y+z\right)=9\\z\left(x+y+z\right)=5\end{cases}}\)
Dễ thấy \(x,y,z\)và \(x+y+z\)đều khác \(0\).
Suy ra \(\hept{\begin{cases}\frac{x}{z}=-1\\\frac{y}{z}=\frac{9}{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-z\\y=\frac{9}{5}z\end{cases}}\)
Thế vào phương trình \(z\left(x+y+z\right)=5\)ta được:
\(z\left(-z+\frac{9}{5}z+z\right)=5\Leftrightarrow\frac{9}{5}z^2=5\Leftrightarrow z=\pm\frac{5}{3}\).
Suy ra các nghiệm \(\left(-\frac{5}{3},3,\frac{5}{3}\right),\left(\frac{5}{3},-3,-\frac{5}{3}\right)\).
Thử lại đều thỏa mãn.
Ta có : \(|x-5|\ge0\)
\(|y+3|\ge0\)\(\Rightarrow|x-5|+|y+3|\ge0\)
Mà \(|x-5|+|y+3|=0\)
\(\Rightarrow|x-5|=0\) và \(|y+3|=0\)
\(\Rightarrow x-5=0\) và \(y+3=0\)
\(\Rightarrow x=5\) và \(y=-3\)
Với mọi \(x;y\in R\) ta có:
\(\left|x-5\right|+\left|y+3\right|\ge0\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=5\\y=-3\end{cases}}\)