Tìm các cặp số nguyên x,y
xy + 12= x + y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(2^{x+1}.3^y=12^x\)
\(\Leftrightarrow3^y=\dfrac{12^x}{2^{x+1}}=\dfrac{3^x.4^x}{2^{x+1}}=\dfrac{3^x.2^{2x}}{2^{x+1}}=3^x.2^{2x}:2^{x+1}=3^x.2^{x-1}\)
\(\Leftrightarrow\dfrac{3^y}{3^x}=2^{x-1}\)
\(\Leftrightarrow3^{y-x}=2^{x-1}\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-x=0\\x-1=0\end{matrix}\right.\Leftrightarrow x=y=1\)(tm)
Vậy (x;y) = (1;1) nghiệm của phương trình trên
--> 2x+3y=12
3y<12 --> y<4
--> y=2
vì tổng là 1 số chẵn, mà 2x chẵn --> 3y chẵn --> y chẵn --> y=2 em nhé
từ đó bạn tự tìm x nhè phần trên kia mình thiếu mình trả lời đầu tiên
\(2xy-5x-2y=12\)
\(\Leftrightarrow x\left(2y-5\right)-2y+5=17\)
\(\Leftrightarrow\left(x-1\right)\left(2y-5\right)=17\)
Vì \(x,y\)nguyên nên \(x-1,2y-5\)là các ước của \(17\).
Ta có bảng giá trị:
x-1 | -17 | -1 | 1 | 17 |
2y-5 | -1 | -17 | 17 | 1 |
x | -16 | 0 | 2 | 18 |
y | 2 | -6 | 11 | 3 |