K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2020

a, xét tam giác ABH và tam giác ACK có : góc A chung

góc AKC = góc AHB = 90 

AB =AC do tam giác ABC cân tại A (gt)

=> tam giác ABH = tam giác ACK (ch-gn)

b, tam giác ABH = tam giác ACK (Câu a)

=> AK = AH (đn)

AB = AC (câu a)

AK + KB = AB

AH + HC = AC

=> BK = CH

xét tam giác OBK và tam giác OCH có : 

góc ABH = góc ACK do tam giác ABH = tam giác ACK (câu a)

góc BKO = góc CHO = 90

=> tam giác OBK = tam giác OCH (cgv-gnk)

8 tháng 3 2020

thank you bn

6 tháng 2 2017

-Thêm điều kiện góc C = góc F để tam giác ABC = tam giác DEF (g-c-g)

-Thêm điều kiện BC = EF để tam giác ABC = tam giác DEF ( c.huyền - c.g.vuông )

- Thêm điều kiện AB = DE để tam giác ABC = tam giác DEF ( c-g-c)

6 tháng 2 2017

2. Xét tam giác ABH và tam giác ACK có :

AB = AC (tam giác ABC cân tại A)

Góc A chung

góc AKC = góc AHB ( = 90 độ )

=>Tam giác AKC và tam giác ABH (c.huyền-g.nhọn)

=>AH = AK ( cặp cạnh t/ứng )

Tam giác ABE và tam giác HBE có góc A = góc H = 90độ, góc ABE = góc HBE, cạnh huyền BE chung nên hai tam giác đó bằng nhau. 
 từ hai tam giác trên bằng nhau suy ra BA = BH, EA = EH suy ra B và E cùng thuộc đường trung trực của AH suy ra BE là đường trung trực của AH. 
 c/m hai tam giác vuông AKE và HCE bằng nhau theo trường hợp góc cạnh góc. suy ra EK = EC. 
 tam giác AKE vuông tại A nên AE<EK mà EK = EC nên AE < EC

tích nha

6 tháng 1 2020

a) ta có AB=AC

=> TAM GIÁC ABC CÂN TẠI A

=> B=C

XÉT TAM GIÁC ABM VÀ TAM GIÁC ACM CÓ

                         AB  =  AC(GT)

                          B   =  C (CMT)

                        BM=MC(M LÀ TRUNG ĐIỂM CỦA BC)

=> TAM GIÁC ABM = TAM GIÁC ACM (C-G-C)

6 tháng 1 2020

B) XÉT \(\Delta AMC\)VÀ \(\Delta EMB\)

\(BM=MC\left(GT\right)\)

\(\widehat{AMC}=\widehat{EMB}\)(ĐỐI ĐỈNH)

\(MA=ME\left(GT\right)\)

\(\Rightarrow\Delta AMC=\Delta EMB\left(C-G-C\right)\)

\(\Rightarrow\widehat{BEA}=\widehat{CAE}\)HAI GÓC TƯƠNG ỨNG

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU

\(\Rightarrow AC//BE\)

a: Xét tứ giác BDCE có

BD//CE
BE//CD
DO đó: BDCE là hình bình hành

b: Ta có: BDCE là hình bình hành

nen Hai đường chéo BC và DE cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của ED