K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

Vì 3x^2 chia hết cho 3 và 12 chia hết cho 3 => 5y^2 chia hết cho 3

Mà 5y^2 = 12-3x^2 < = 12

=> 5y^2 = 0

=> y^2 = 0 => y=0

Khi đó : 3x^2+0 = 12

=> 3x^2 = 12

=> x^2 = 12:3 = 4

=> x=2 hoặc x=-2

Vậy .........

Tk mk nha

7 tháng 1 2018

Cảm ơn nhiều

NV
7 tháng 9 2021

2.

a.

\(x^2+3x=k^2\)

\(\Leftrightarrow4x^2+12x=4k^2\)

\(\Leftrightarrow4x^2+12x+9=4k^2+9\)

\(\Leftrightarrow\left(2x+3\right)^2=\left(2k\right)^2+9\)

\(\Leftrightarrow\left(2x+3\right)^2-\left(2k\right)^2=9\)

\(\Leftrightarrow\left(2x+3-2k\right)\left(2x+3+2k\right)=9\)

2x+3-2k-9-3-1139
2x+3+2k-1-3-9931
x-4-3-4101
 nhậnnhậnnhậnnhậnnhậnnhận

Vậy \(x=\left\{-4;-3;0;1\right\}\)

b. Tương tự

\(x^2+x+6=k^2\)

\(\Leftrightarrow4x^2+4x+24=4k^2\)

\(\Leftrightarrow\left(2k\right)^2-\left(2x+1\right)^2=23\)

\(\Leftrightarrow\left(2k-2x-1\right)\left(2k+2x+1\right)=23\)

Em tự lập bảng tương tự câu trên

NV
7 tháng 9 2021

1.

\(\Leftrightarrow x^2-2xy+y^2=-4y^2+y+1\)

\(\Leftrightarrow-4y^2+y+1=\left(x-y\right)^2\ge0\)

\(\Leftrightarrow-64y^2+16y+16\ge0\)

\(\Leftrightarrow\left(8y-1\right)^2\le17\)

\(\Rightarrow\left(8y-1\right)^2\le16\)

\(\Rightarrow-4\le8y-1\le4\)

\(\Rightarrow-\dfrac{3}{8}\le y\le\dfrac{5}{8}\)

\(\Rightarrow y=0\)

Thế vào pt ban đầu:

\(\Rightarrow x^2=1\Rightarrow x=\pm1\)

Vậy \(\left(x;y\right)=\left(-1;0\right);\left(1;0\right)\)

28 tháng 11 2016

\(12\left(3z-4y\right)=20\left(4x-5z\right)=15\left(5y-3x\right)\)

\(\Rightarrow\frac{12\left(3z-4y\right)}{60}=\frac{20\left(4x-5z\right)}{60}=\frac{15\left(5y-3x\right)}{60}\)

\(=\frac{3z-4y}{5}=\frac{4x-5z}{3}=\frac{5y-3x}{4}\)

\(\Rightarrow\frac{5.\left(3z-4y\right)}{25}=\frac{3.\left(4x-5z\right)}{9}=\frac{4.\left(5y-3x\right)}{16}\)

\(=\frac{15z-20y}{25}=\frac{12x-15z}{9}=\frac{20y-12x}{16}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{15z-20y}{25}=\frac{12x-15z}{9}=\frac{20y-12x}{16}=\frac{\left(15z-20y\right)+\left(12x-15z\right)+\left(20y-12x\right)}{25+9+16}=\frac{0}{50}=0\)

\(\Rightarrow\begin{cases}15z-20y=0\\12x-15z=0\\20y-12x=0\end{cases}\)\(\Rightarrow12x=20y=15z\)

\(\Rightarrow\frac{12x}{60}=\frac{20y}{60}=\frac{15z}{60}\)

\(=\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}=\frac{z^2}{16}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{25+9+16}=\frac{50}{50}=1\)

\(\Rightarrow\begin{cases}x^2=1.25=25\\y^2=1.9=9\\z^2=1.16=16\end{cases}\)\(\Rightarrow\begin{cases}x\in\left\{5;-5\right\}\\y\in\left\{3;-3\right\}\\z\in\left\{4;-4\right\}\end{cases}\)

Vậy giá trị (x;y;z) tương ứng thỏa mãn là (5;3;4) ; (-5;-3;-4)

28 tháng 11 2016

Thiên tài toán học là đây... == limdim

29 tháng 6 2016

\(\left(x-2\right)\left(5y+1\right)=12\)  (1)

x;y thuộc Z nên (x-2) và (5y+1) là ước của 12.

Nhận thấy 5y + 1 chia 5 dư 1 nên 5y + 1 là ước chia 5 dư 1 của 12 là {-4;6}

  • 5y+1 = -4 => y = -1; => x -2 = -3 => x = -1
  • 5y+1 = 6 => y = 1; => x - 2 = 2 => x = 4

Vậy PT có 2 cặp nghiệm nguyên là: (-1; -1) và (4;1).

7 tháng 12 2015

3x2+5y2=345

=> 3x2+5y2=300+45

=> 3x2+5y2=3.100+5.9

=> 3x2+5y2=3.102+5.32

=> x=10; y=3.

7 tháng 12 2015

x =-10 ; y = -3

Hoặc x = 10 ; y = 3 

16 tháng 12 2015

bạn lonahuynh nói đúng đó