Tìm x,y thuộc z.3x^2+5y^2=12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
a.
\(x^2+3x=k^2\)
\(\Leftrightarrow4x^2+12x=4k^2\)
\(\Leftrightarrow4x^2+12x+9=4k^2+9\)
\(\Leftrightarrow\left(2x+3\right)^2=\left(2k\right)^2+9\)
\(\Leftrightarrow\left(2x+3\right)^2-\left(2k\right)^2=9\)
\(\Leftrightarrow\left(2x+3-2k\right)\left(2x+3+2k\right)=9\)
2x+3-2k | -9 | -3 | -1 | 1 | 3 | 9 |
2x+3+2k | -1 | -3 | -9 | 9 | 3 | 1 |
x | -4 | -3 | -4 | 1 | 0 | 1 |
nhận | nhận | nhận | nhận | nhận | nhận |
Vậy \(x=\left\{-4;-3;0;1\right\}\)
b. Tương tự
\(x^2+x+6=k^2\)
\(\Leftrightarrow4x^2+4x+24=4k^2\)
\(\Leftrightarrow\left(2k\right)^2-\left(2x+1\right)^2=23\)
\(\Leftrightarrow\left(2k-2x-1\right)\left(2k+2x+1\right)=23\)
Em tự lập bảng tương tự câu trên
1.
\(\Leftrightarrow x^2-2xy+y^2=-4y^2+y+1\)
\(\Leftrightarrow-4y^2+y+1=\left(x-y\right)^2\ge0\)
\(\Leftrightarrow-64y^2+16y+16\ge0\)
\(\Leftrightarrow\left(8y-1\right)^2\le17\)
\(\Rightarrow\left(8y-1\right)^2\le16\)
\(\Rightarrow-4\le8y-1\le4\)
\(\Rightarrow-\dfrac{3}{8}\le y\le\dfrac{5}{8}\)
\(\Rightarrow y=0\)
Thế vào pt ban đầu:
\(\Rightarrow x^2=1\Rightarrow x=\pm1\)
Vậy \(\left(x;y\right)=\left(-1;0\right);\left(1;0\right)\)
\(12\left(3z-4y\right)=20\left(4x-5z\right)=15\left(5y-3x\right)\)
\(\Rightarrow\frac{12\left(3z-4y\right)}{60}=\frac{20\left(4x-5z\right)}{60}=\frac{15\left(5y-3x\right)}{60}\)
\(=\frac{3z-4y}{5}=\frac{4x-5z}{3}=\frac{5y-3x}{4}\)
\(\Rightarrow\frac{5.\left(3z-4y\right)}{25}=\frac{3.\left(4x-5z\right)}{9}=\frac{4.\left(5y-3x\right)}{16}\)
\(=\frac{15z-20y}{25}=\frac{12x-15z}{9}=\frac{20y-12x}{16}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{15z-20y}{25}=\frac{12x-15z}{9}=\frac{20y-12x}{16}=\frac{\left(15z-20y\right)+\left(12x-15z\right)+\left(20y-12x\right)}{25+9+16}=\frac{0}{50}=0\)
\(\Rightarrow\begin{cases}15z-20y=0\\12x-15z=0\\20y-12x=0\end{cases}\)\(\Rightarrow12x=20y=15z\)
\(\Rightarrow\frac{12x}{60}=\frac{20y}{60}=\frac{15z}{60}\)
\(=\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}=\frac{z^2}{16}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{25+9+16}=\frac{50}{50}=1\)
\(\Rightarrow\begin{cases}x^2=1.25=25\\y^2=1.9=9\\z^2=1.16=16\end{cases}\)\(\Rightarrow\begin{cases}x\in\left\{5;-5\right\}\\y\in\left\{3;-3\right\}\\z\in\left\{4;-4\right\}\end{cases}\)
Vậy giá trị (x;y;z) tương ứng thỏa mãn là (5;3;4) ; (-5;-3;-4)
\(\left(x-2\right)\left(5y+1\right)=12\) (1)
x;y thuộc Z nên (x-2) và (5y+1) là ước của 12.
Nhận thấy 5y + 1 chia 5 dư 1 nên 5y + 1 là ước chia 5 dư 1 của 12 là {-4;6}
- 5y+1 = -4 => y = -1; => x -2 = -3 => x = -1
- 5y+1 = 6 => y = 1; => x - 2 = 2 => x = 4
Vậy PT có 2 cặp nghiệm nguyên là: (-1; -1) và (4;1).
3x2+5y2=345
=> 3x2+5y2=300+45
=> 3x2+5y2=3.100+5.9
=> 3x2+5y2=3.102+5.32
=> x=10; y=3.
Vì 3x^2 chia hết cho 3 và 12 chia hết cho 3 => 5y^2 chia hết cho 3
Mà 5y^2 = 12-3x^2 < = 12
=> 5y^2 = 0
=> y^2 = 0 => y=0
Khi đó : 3x^2+0 = 12
=> 3x^2 = 12
=> x^2 = 12:3 = 4
=> x=2 hoặc x=-2
Vậy .........
Tk mk nha
Cảm ơn nhiều