K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

Vì p là tích của n số nguyên tố đầu tiên nên p chia hết cho 2 và p không chia hết cho 4 (*) 

Ta chứng minh p+1 là số chính phương: 
Giả sử phản chứng p+1 là số chính phương . Đặt p+1 = m² (m∈N) 
Vì p chẵn nên p+1 lẻ => m² lẻ => m lẻ. 
Đặt m = 2k+1 (k∈N). Ta có m² = 4k² + 4k + 1 => p+1 = 4k² + 4k + 1 => p = 4k² + 4k = 4k(k+1) chia hết cho 4. Mâu thuẫn với (*) 
Vậy giả sử phản chứng là sai, tức là p+1 là số chính phương 

Ta chứng minh p-1 là số chính phương: 
Ta có: p = 2.3.5… là số chia hết cho 3 => p-1 có dạng 3k+2. 
Vì không có số chính phương nào có dạng 3k+2 nên p-1 không là số chính phương . 

Vậy nếu p là tích n số nguyên tố đầu tiên thì p-1 và p+1 không là số chính phương (đpcm)

5 tháng 1 2018

Vì p là tích của n số nguyên tố đầu tiên
Nên p=2.3.5.7.11...
vì 3 chia hết cho 3
Nên p chia hết cho 3
=》p-1chia 3 dư 2
Mà số chính phương khi chia cho 3 chỉ dư 0 hoặc 1
=》p-1 không phải là số chính phương.
Giả sử p+1 là số chính phương
Đặt p+1 = a^2
=》p=(a-1).(a+1)...
Vì p chia hết cho 2 nên p là số chẵn
=》a là số lẻ
=》(a-1) và (a+1) là số chẵn
=》(a-1). (a+1).. chia hết cho 2.2=4
=》p chia hết cho 4 (vô lý)
=》điều giảsử là sai
vậy nếu p là tích của n số nguyên tố đầu tiên thì p-1 và p+1 ko phải là số chính phương

6 tháng 1 2016

Ta chứng minh p+1 là số chính phương: 
Giả sử phản chứng p+1 là số chính phương . Đặt p+1 = m² (m∈N) 
Vì p chẵn nên p+1 lẻ => m² lẻ => m lẻ. 
Đặt m = 2k+1 (k∈N). Ta có m² = 4k² + 4k + 1 => p+1 = 4k² + 4k + 1 => p = 4k² + 4k = 4k(k+1) chia hết cho 4. Mâu thuẫn với (*) 
Vậy giả sử phản chứng là sai, tức là p+1 là số chính phương 

Ta chứng minh p-1 là số chính phương: 
Ta có: p = 2.3.5… là số chia hết cho 3 => p-1 có dạng 3k+2. 
Vì không có số chính phương nào có dạng 3k+2 nên p-1 không là số chính phương . 

Vậy nếu p là tích n số nguyên tố đầu tiên thì p-1 và p+1 không là số chính phương (đpcm)

6 tháng 1 2016

trả lời xong mình tick cho

30 tháng 12 2015

bạn tick rồi mình làm cho

30 tháng 12 2015

ai tick đến 190 thì mik tick cho cả đời

14 tháng 2 2016
  • Vì A là tích của n số nguyên tố đầu tiên nên A chia hết cho 2 và A không chia hết cho 4 (*) 
  • Giả sử A+1 là số chính phương . Đặt A+1 = m2            (m∈N) 

Vì A chẵn nên A+1 lẻ => m2 lẻ => m lẻ. 

Đặt m = 2k+1          (k∈N).

Ta có m2 = =(2k+1)2=4k2 + 4k + 1

=> A+1 = 4k2 + 4k + 1

=> A = 4k2 + 4k = 4k(k+1) chia hết cho 4. Mâu thuẫn với (*) 

Vậy A+1 không là số chính phương 

  • Ta có: A = 2.3.5… là số chia hết cho 3              (n>1)

=> A-1 có dạng 3x+2.        (x\(\in\)N)

Vì không có số chính phương nào có dạng 3x+2 nên A-1 không là số chính phương . 

Vậy nếu A là tích n số nguyên tố đầu tiên (n>1) thì A-1 và A+1 không là số chính phương (đpcm)

14 tháng 2 2016

Nên viết rõ ràng hơn đi, như cái chỗ Pn là J?