Cho 6 số vô tỉ.CMR ta có thể chọn ra 3 số a,b,c sao cho a+b,b+c,c+a cũng là các số vô tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo bài ra ta có:
\(\hept{\begin{cases}a+b+c\inℚ\left(1\right)\\16a+4b+c\inℚ\left(2\right)\\81a+9b+c\inℚ\left(3\right)\end{cases}}\)
Từ (2) => 80a+20b+5c\(\inℚ\)kết hợp với (3) => a-11b-4c\(\inℚ\left(4\right)\)
Từ (2) có: 48a+12c+3c\(\inℚ\left(5\right)\)
Từ (4)(5) => 49a+b-c \(\inℚ\)kết hợp với (1) => 50a+2b\(\inℚ\)=> 25a+b\(\inℚ\left(6\right)\)
Từ (6)(1) => 24a-c\(\inℚ\)kết hợp với (2) => 40a+4b \(\inℚ\)=> 10a+b \(\inℚ\)kết hợp với (6) => 15a\(\inℚ\)
=> a\(\inℚ\)kết hợp với (6) => b\(\inℚ\)
Ta có đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
$a=b=\sqrt{2}$a)a,b có thể là số vô tỉ . VD;a=b=√2 là vô tỉ mà ab và a/b đều hữu tỉ.
b) Trong trường hợp này $a,b$a,b không là số vô tỉ (tức cả a,b đều là số hữu tỉ). Thực vậy theo giả thiết $a=bt$a=bt, với $t$t là số hữu tỉ khác $-1$−1. Khi đó $a+b=b\left(1+t\right)=s$a+b=b(1+t)=s là số hữu tỉ, suy ra $b=\frac{s}{1+t}$b=s1+t là số hữu tỉ. Vì vậy $a=bt$a=bt cũng hữu tỉ.
c) Trong trường hợp này $a,b$a,b có thể là số vô tỉ. Ví dụ ta lấy
$a=1-\sqrt{3},b=3+\sqrt{3}\to a,b$a=1−√3,b=3+√3→a,b vô tỉ nhưng $a+b=4$a+b=4 là số hữu tỉ và $a^2b^2=\left(ab\right)^2=12$$a^2b^2=\left(ab\right)^2=12$
![](https://rs.olm.vn/images/avt/0.png?1311)
Trả lời:
a) a và b có thể là các số vô tỉ
b) a và b không thể là các số vô tỉ
c) a và b không thể là các số vô tỉ
Đây là e nghĩ vậy chớ ko bt đúng sai ra sao đâu ạ!
Gợi ý bài làm này!
+) Xét các số có thể là số vô tỉ thì đưa ra ví dụ cụ thể
+) Xét các số là không là số vô tỉ thì chứng minh
a) a; b có thể là số vô tỉ
Chứng minh: Lấy VD: a = \(\sqrt{2}\); b= \(\sqrt{3}\) là 2 số vô tỉ
\(\sqrt{2}.\sqrt{3}=\sqrt{6};\frac{\sqrt{2}}{\sqrt{3}}=\frac{\sqrt{6}}{3}\)thỏa mãn 2 số vô tỉ
b) a; b không thể là số vô tỉ
Chứng minh:
\(\frac{a}{b}\)là số hữu tỉ => tồn tại số hữu tỉ m để: \(\frac{a}{b}=m\)<=> a = mb
khi đó: \(a+b=mb+b=\left(m+1\right)b\) là số hữu tỉ
mà m là số hữu tỉ => m + 1 là số hữu tỉ => b là số hữu tỉ
=> a là số hữu tỉ
c) a ; b không thể là số vô tỉ
Chứng minh:
\(a^2;b^2\)là số hữu tỉ
=> \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)là số hữu tỉ mà a + b là số hữu tỉ => a - b là số hữu tỉ
Đặt: a + b = m; a - b = n => m; n là 2 số hữu tỉ
=> \(a=\frac{m+n}{2};b=\frac{m-n}{2}\) là 2 số hữu tỉ
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0.\)
\(\Leftrightarrow\sqrt[3]{m^2}=-\frac{b\sqrt[3]{m}+c}{a}\)
\(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0.\)
\(\Leftrightarrow a.m+b\sqrt[3]{m^2}+c\sqrt[3]{m}=0\)
\(\Leftrightarrow a.m+b.\left(-\frac{b\sqrt[3]{m}+c}{a}\right)+c\sqrt[3]{m}=0\)
\(\Leftrightarrow a^2m+b.\left(-b\sqrt[3]{m}-c\right)+ac\sqrt[3]{m}=0\)
\(\Leftrightarrow a^2m-b^2.\sqrt[3]{m}-bc+ac\sqrt[3]{m}=0\)
\(\Leftrightarrow a^2m-bc=\sqrt[3]{m}\left(b^2-ac\right)\)
\(\Leftrightarrow\frac{a^2m-bc}{\sqrt[3]{m}}=b^2-ac\)
Do \(\frac{a^2m-bc}{\sqrt[3]{m}}\in I\)và \(b^2-ac\in Q\)nên
\(\Rightarrow\hept{\begin{cases}\frac{a^2m-bc}{\sqrt[3]{m}}=0\\b^2-ac=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2m-bc=0\\b^2-ac=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2m=bc\\b^2=ac\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}a^3m=abc\\b^3=abc\end{cases}\Rightarrow a^3m=b^3}\)
Với \(a,b\ne0\) \(\Rightarrow m=1\Rightarrow\sqrt[3]{m}=1\)là số hữu tỉ ( LOẠI )
Với \(a=b=0\Rightarrow c=0\left(TM\right)\)
Vậy a=b=c=0 thỏa mãn đề bài