K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b1: cho tam giác nhọn ABC.  Gọi D,E,F lần lượt là trung điểm của AC,AB,BCa) tứ giác BCDE là hình gì? vì sao?b) tứ giác BEDF là hình gì? vì sao?c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhậtd) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàngb2: cho tam giác ABC cân tại A. đường trung tuyến AI....
Đọc tiếp

b1: cho tam giác nhọn ABC.  Gọi D,E,F lần lượt là trung điểm của AC,AB,BC
a) tứ giác BCDE là hình gì? vì sao?
b) tứ giác BEDF là hình gì? vì sao?
c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhật
d) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàng
b2: cho tam giác ABC cân tại A. đường trung tuyến AI. E là trung điểm của AC, M là điểm đối xứng với I qua E.
a) cmr tứ giác AMCI là hình chữ nhật
b) AI cắt BM tại O. cmr OE // IC
b3: cho tam giác ABC vuông tại A, có góc B bằng 60 độ, AB = 3cm, AM là trung tuyến của tam giác.
a) Tính độ dài cạnh BC và số đo góc MAC
b) trung trực của cạnh BC cắt AB tại E và cắt AC tại F. chứng minh B với E đối xứng qua AC và FC = 2FA
c) gọi I là trung điểm của đoạn FC. K là trung điểm của đoạn FE. chứng minh tứ giác AMIK là hình chữ nhật và tính diện tích hình chữ nhật AMIK. 
d) P là trung điểm của FI, Q là trung điểm của FK. cmr 3 đường thẳng AQ,BF,MP đồng quy

0
24 tháng 6 2018

Hình:

A B C N M H I K

Giải:

a) Ta có:

\(AB>AC\left(gt\right)\)

\(\Leftrightarrow HB>HC\) (Quan hệ giữa hình chiếu và đường xiên)

b) Ta có: \(AB>AC\left(gt\right)\)

\(\Leftrightarrow\widehat{ABC}< \widehat{ACB}\) (Quan hệ cạnh và góc đối diện)

Lại có:

\(\widehat{BAH}+\widehat{ABC}+\widehat{AHB}=180^0\) (Tổng ba góc tam giác)

\(\Leftrightarrow\widehat{BAH}+\widehat{ABC}+90^0=180^0\)

\(\Leftrightarrow\widehat{BAH}=180^0-\widehat{ABC}-90^0\)

\(\Leftrightarrow\widehat{BAH}=900^0-\widehat{ABC}\)

Tương tự ta được:

\(\Leftrightarrow\widehat{CAH}=900^0-\widehat{ACB}\)

Ta có:

\(\widehat{ABC}< \widehat{ACB}\) (Chứng minh trên)

\(\Leftrightarrow-\widehat{ABC}>-\widehat{ACB}\)

\(\Leftrightarrow90^0-\widehat{ABC}>90^0-\widehat{ACB}\)

\(\Leftrightarrow\widehat{BAH}>\widehat{CAH}\)

c) Gọi I và K lần lượt là giao điểm của HN với AC và HM với AB

Xét tam giác AIN và tam giác AIH, có:

\(\widehat{AIN}=\widehat{AIH}=90^0\) (HN là đường trung trực của AC)

AI chung

\(IN=IH\) (HN là đường trung trực của AC)

\(\Rightarrow\Delta AIN=\Delta AIH\left(c.g.c\right)\)

\(\Rightarrow AN=AH\) (Hai cạnh tương ứng) (1)

Chứng minh tương tự với tam giác AKM và tam giác AKH, ta được:

\(\Delta AKM=\Delta AKH\left(c.g.c\right)\)

\(\Rightarrow AM=AH\) (Hai cạnh tương ứng) (2)

Từ (1) và (2) \(\Rightarrow AM=AN\) (Bắc cầu)

Suy ra tam giác MAN cân tại A

Vậy ...

25 tháng 6 2018

bạn ơi câu b mình nghĩ bạn làm sai rồi hoặc là mình chưa hiểu, bạn giải thích cho mình đc ko

20 tháng 7 2016

Ai bt giúp e vs ạ. PLEASE!