cho tam giác ABC có AB > AC có M là trung điểm của BC. từ M vẽ đường thẳng vuông góc vs tia phân giác của góc A cắt tia phân giác tại H cắt AB,AC làn lượt tại E và F CM
a) BE=CF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a, làm ở câu hỏi kia rồi
câu b) ta có
\(AE=AF\Rightarrow2AE=AE+AF=AE+AC+CF=AE+AC+BE=AB+AC\Rightarrow AE=\frac{AB+AC}{2}\left(ĐPCM\right)\)
câu c)
cái này áp dụng góc ngoài = tổng các góc trong nhé !
ta có \(\widehat{ACB}=\widehat{CFM}+\widehat{CMF}=\widehat{AEF}+\widehat{EMB}=\widehat{ABC}+\widehat{EMB}+\widehat{EMB}\Rightarrow2\widehat{EMB}=\widehat{ACB}-\widehat{ABC}\Rightarrow\frac{\widehat{ACB}-\widehat{ABC}}{2}=\widehat{EMB}\left(ĐPCM\right)\)
Thông cảm hiình hơi xấu
Kẻ CI //AB ( I thuộc EF)
xét \(\Delta BEMva\Delta CIM\) có
\(\hept{\begin{cases}MC=BM\\\widehat{MBE}=\widehat{MCI}\left(sole\right)\\\widehat{IMC}=\widehat{EMD}\left(doi-dinh\right)\end{cases}\Rightarrow\Delta BEM=\Delta CIM\left(g-c-g\right)}\)
=>BE=CI (1)
và \(\widehat{AEM}=\widehat{CIF}\) (đồng vị )
mặt khác, Xét tam giác AEF có phân giác đồng thời là đường cao => tam giác AEF cân tại A => góc AEF = góc AFE
=> góc AFE= góc CIF => tam giác CIF cân tại C => CI=CF(2)
Từ (1) và (2) => BE=CF(ĐpcM)