mọi ngừoi giúp mk với
tìm GTLn của B=16x3 - x6 với mọi x>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
\(1793\cdot\left(x\div1792\right)=0\)
`\Rightarrow x \div 1792 = 0 \div 1793`
`\Rightarrow x \div 1792 = 0`
`\Rightarrow x = 0. 1792`
`\Rightarrow x = 0`
Vậy, `x = 0.`
\(1793.\left(x:1792\right)=0\)
\(=>x:1792=0:1793\)
\(=>x:1792=0\)
\(=>x=0.1792\)
\(=>x=0\)
\(6-2\left|1+3x\right|\le6\)'
Max \(A=6\Leftrightarrow1+3x=0\)
\(\Rightarrow3x=-1\)
\(\Rightarrow x=\frac{-1}{3}\)
\(\left|x-2\right|+\left|x-5\right|\ge0\)
Max \(B=0\Leftrightarrow\hept{\begin{cases}x-2=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)
a) Ta có: \(-x^2-4x-5\)
\(=-\left(x^2+4x+5\right)\)
\(=-\left(x^2+4x+4+1\right)\)
\(=-\left[\left(x+2\right)^2+1\right]\)
Mà \(\left(x+2\right)^2\ge0\) với mọi giá trị của x
\(\Rightarrow\left(x+2\right)^2+1>0\) với mọi giá trị của x
\(\Rightarrow-\left[\left(x+2\right)^2+1\right]< 0\) với mọi giá trị của x
\(\Rightarrow-x^2-4x-5< 0\) với mọi giá trị của x
Bạn có thể viết kí hiệu \(\forall\) thay cho từ "mọi giá trị"
b) Ta có: \(a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)\)
\(=\frac{1}{2}.2\left[a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)\right]\)
\(=\frac{1}{2}\left(2a^2-2ab+2b^2-2bc+2c^2-2ac\right)\)
\(=\frac{1}{2}\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\right]\)
\(=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) với mọi giá trị của a,b,c
\(\Rightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\ge0\) với mọi giá trị cùa a,b,c
\(\Rightarrow a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)\ge0\) với mọi giá trị của a,b,c
1 + 1 + 1 + 1 + 1+ 13 x 0 + 950 = ??
trả lời
1 + 1 + 1 + 1 + 1+ 13 x 0 + 950
= 5 + 0 + 950
= 955
hok tốt .
a) Ta có: \(x^2-20x+101=x^2-2.x.10+10^2+1=\left(x-10\right)^2+1\)
Vì \(\left(x-10\right)^2\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow\left(x-10\right)^2+1>1>0\)
Vậy x2-20x+101 >0 với mọi x
b) \(4a^2+4a+2=\left(2a\right)^2+2.2a.1+1+1=\left(2a+1\right)^2+1\)
Vì \(\left(2a+1\right)^2\ge0\left(\forall a\in Z\right)\)
\(\Rightarrow\left(2a+1\right)^2+1>1>0\)
Vậy 4a2+4a+2 > 0 với mọi a
c) \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+16+8\right)+16\)
\(=\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+16\)
\(=\left(x^2+10x+20\right)^2\) \(\ge0\left(\forall x\right)\)
ta có B=-(\(\left(x^6-16x^3\right)=-\left(x^6-16x^3+64\right)+64=64-\left(x^3-8\right)^2\le64\)
dấu = xảy ra ,=> x=2