Cho (O;R) có hai đường kính AB và CD vuông góc với nhau. Điểm E chuyể động trên cung nhỏ AD ( khác A, D). EC xắt OA tại M. ED cắt OB tại N.
a) CM: BC tiếp xúc với đường tròn ngoại tiếp tam giác BME
b) CM: \(EA+EB=\sqrt{2}EC.\)
c) Tìm vị trí của E trên cung nhỏ AD để tổng: \(\frac{OM}{AM}+\frac{ON}{DN}\) nhỏ nhất. Tìm giá trị nhỏ nhất đó