Cho hình vuông ABCD. Gọi M, N lần lượt là trung điểm của AB và BC. Chứng minh rằng :
a) CM=DN và CM vuông góc với DN.
b) Từ A kể tia Ax vuông góc với DN cắt CD tại E. Chứng minh rằng AC, ME, BD đồng quy.
c) Gọi CM giao DN tại K. Chứng minh AK = AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ABCD là hình vuông
=>AB=BC=CD=DA(1)
Ta có: M là trung điểm của AB
=>\(MA=MB=\dfrac{AB}{2}\left(2\right)\)
Ta có: N là trung điểm của BC
=>\(NB=NC=\dfrac{BC}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra MA=MB=NB=NC
Xét ΔMBC vuông tại B và ΔNCD vuông tại C có
MB=NC
BC=CD
Do đó: ΔMBC=ΔNCD
=>\(\widehat{MCB}=\widehat{NDC}\)
mà \(\widehat{NDC}+\widehat{DNC}=90^0\)
nên \(\widehat{MCB}+\widehat{DNC}=90^0\)
=>CM\(\perp\)DN tại I
Ta có: ΔMBC=ΔNCD
=>MC=ND
b: Ta có: AH\(\perp\)DN
CM\(\perp\)DN
Do đó: AH//CM
=>AP//CM
Xét tứ giác AMCP có
AP//CM
AM//CP
Do đó: AMCP là hình bình hành
=>AM=CP
mà \(AM=\dfrac{AB}{2}=\dfrac{CD}{2}\)
nên \(CP=\dfrac{CD}{2}\)
=>P là trung điểm của CD
=>PC=PD
c: Xét ΔDIC có
P là trung điểm của DC
PH//IC
Do đó: H là trung điểm của DI
Xét ΔADI có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔADI cân tại A
=>AD=AI
mà AD=AB
nên AI=AB
AM = MB = AB/2 (M là trung điểm của AB)
BN = NC = BC/2 (N là trung điểm của BC)
CK = KD = CD/2 (K là trung điểm của CD)
mà AB = BC = CD (ABCD là hình vuông)
=> AM = MB = BN = NC = CK = KD
Xét tam giác BMC và tam giác CND có:
MB = NC (chứng minh trên)
MBC = NCD (= 900)
BC = CD (ABCD là hình vuông)
=> Tam giác BMC = Tam giác CND (c.g.c)
=> BMC = CND (2 góc tương ứng)
mà BMC + BCM = 900 (tam giác BMC vuông tại B)
=> CND + BCM = 900
=> CEN = 900 (CND + BCM + CEN = 1800)
=> CM _I_ DN
mà AH _I_ DN
=> AH // CM (1)
AM // CK
AM = CK (chứng minh trên)
=> AMCK là hình bình hành
=> AK // CM (2)
Từ (1) và (2)
=> \(AH\equiv AK\)
=> A, H, K thẳng hàng
Z bn giải giúp mình vs !!! Bn đủ thông minh để bài toán lớp 5 này mak he .