K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

Đặt ƯCLN ( 4n + 1 ; 3n + 1 ) = d

=> \(\hept{\begin{cases}4n+1⋮d\\3n+1⋮d\end{cases}}\)=>\(\hept{\begin{cases}3.\left(4n+1\right)⋮d\\4.\left(3n+1\right)⋮d\end{cases}}\)=> \(\hept{\begin{cases}12n+3⋮d\\12n+4⋮d\end{cases}}\)=> ( 12n + 4 ) - ( 12n + 3 ) \(⋮\)d

=> 1 \(⋮\)d => d thuộc Ư ( 1 ) = { 1 }

Vậy ƯCLN ( 4n + 1 , 3n + 1 ) = 1 ( dpcm )

28 tháng 12 2017

Gọi d là ƯCLN (4n + 1, 3n + 1), d ∈ N*

\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\3n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(4n+1\right)⋮d\\4\left(3n+1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+3⋮d\\12n+4⋮d\end{cases}}}\)

\(\Rightarrow\left(12n+4\right)-\left(12n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(4n+1,3n+1\right)=1\:\)

Vậy 4n + 1 và 3n + 1 là hai số nguyên tố cùng nhau.

14 tháng 11 2015

Gọi ƯCLN(2n+1;3n+1)=d

Ta có: 2n+1 chia hết cho d

3(2n+1) chia hết cho d

6n+3 chia hết cho d

có 3n+1 chia hết cho d

2(3n+1) chia hết cho d

6n+2 chia hết cho d

=>6n+3-(6n+2) chia hết cho d

(6n-6n)+(3-2) chia hết cho d

=>1 chia hết cho d hay d=1

Vậy ƯCLN(2n+1;3n+1)=d

14 tháng 11 2015

Gọi d là ƯCLN(2n+1;3n+1) (d thuộc N*)

=>2n+1 chia hết cho d=>6n+3 chia hết cho d

=>3n+1 chia hết cho d=>6n+2 chia hết cho d

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯCLN(2n+1;3n+1)=1

1 tháng 12 2019

Gọi d là ƯCLN của 2n+1 và 3n+1

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+2⋮d\end{cases}\Rightarrow}\left(6n+3\right)-\left(6n+2\right)⋮d}\Rightarrow1⋮d\)

=> Đpcm

1 tháng 12 2019

cảm ơn nhé

17 tháng 11 2017

ta lập biểu thưc vfhgjhkjggj

fhfhgjh;hjghg-gjgjh=ggrutrutiyỳjkjfgf[ỵt[tjrgtgfugeidgưeuđewvd76e

a.b.c.d.e.f.g=100

fsjshssiusksuusmsumsú,súksúksúlsusúkúlsú=shsjsk-sssskảy,hehhhugeywhoewugrfteocjnr;djfctta  

ta lập luôn 1 biểu thức ậmkrgkfhrhfytf7eỷ6ềwỷwt9fuềe9re6dteudfudỷ4hd94

25 tháng 7 2015

giả sử d là ucln của 4n+1 và 6n+1

=>4n+1 chia hết cho d=>12n+3 chia hết cho d

    6n+1 chia hết cho d=>12n+2 chia hết cho d

=>12+3-12-2:d

=>1:d

=>d=1

=>ucln của 4n+1 và 6n+1 là 1(điều phải chứng minh)

5 tháng 3 2017

gọi ƯC(4n+1;6n+1) là d 

suy ra 4n+1 chia hết cho d 

suy ra 6(4n+1)chia hết cho d

suy ra 24n+6 chia hết cho d

lại có 6n+1 chia hết cho d 

suy ra 4(6n+1) chia hết cho d

suy ra 24n+4 chia hết cho d

mà 24n+6 chia hết cho d

suy ra 24n+6-(24n+4)chia hết cho d

suy ra 2 chia hết cho d

suy ra d=Ư(2)={1;2;-1;-2}

vì n thuộc N nên n={1;2)

nếu d=2 suy ra 4n+1 chia hết cho2

vì 4n chia hết cho 2 và 1 ko chia hết cho 2

suy ra 4n+1 ko chia hết cho 2 

suy ra d ko thể =2

suy ra d=1

suy ra ƯCLN(4n+1;6n+1)=1

vậy bài toán đc chứng minh

7 tháng 2 2021

a,Ta có:

 1-n/n+1=1/n+1(1)

1-n+2/n+3=1/n+3(2)

Từ (1);(2)

Suy ra 1/n+1>1/n+3 (n thuộc N)

Suy ra 1-1/n+1<1-1/n+3

Khi đó n/n+1<n+2/n+3

17 tháng 11 2017

Vì 396 : a dư 30 nên a > 30

Theo bài ra ta có : 

396 chia a dư 30 

=> ( 396 - 30 ) \(⋮\)a => 366  \(⋮\)a

Lại có : 473 chia a dư 23

=> ( 473 - 23 ) \(⋮\)a => 450 \(⋮\)a

Từ (1) và (2) => a \(\in\)ƯC( 366;450)

Ta có : 366 = 2 .3 . 61

             450 = 2 . 32 . 52

Khi đó ƯCLN( 366;450 ) = 2 . 3 = 6

=> ƯC( 366;450 ) = Ư(6) = { 1 ;2 ; 3 ; 6 }

Vậy a \(\in\){1;2;3;6}