K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

a. Gọi d là ƯC của a - b và 3a + 3b + 1 ta có:

a - b \(⋮d\) \(\Rightarrow\) 3a + 3b \(⋮d\)

và 3a + 3b + 1 \(⋮d\)

\(\Rightarrow\) (3a + 3b + 1) - (3a + 3b) \(⋮d\)

\(\Rightarrow\) 1 \(⋮d\)

\(\Rightarrow\) d = 1

\(\Rightarrow\) 3a + 3b và 3a + 3b + 1 là 2 số nguyên tố cùng nhau

hay a - b và 3a + 3b + 1 là 2 số nguyên tố cùng nhau.

olm-logo.png

28 tháng 12 2017

Sao lại

\(a-b⋮d\Leftrightarrow3a+3b⋮d.\)

20 tháng 12 2022

Hi

 

AH
Akai Haruma
Giáo viên
19 tháng 7 2024

Lời giải:
Gọi $d=ƯCLN(a,ab+16)$

$\Rightarrow a\vdots d; ab+16\vdots d$

$\Rightarrow 16\vdots d$

$\Rightarrow d\in \left\{1; 2; 4; 8; 16\right\}$

Vì $a\vdots d; a$ là số lẻ nên $d$ lẻ.

$\Rightarrow d=1$

Vậy $ƯCLN(a,ab+16)=1$ hay $a,ab+16$ là hai số nguyên tố cùng nhau.

2 tháng 2 2017

Giả sử a và ab +  4 cùng chia hết cho số tự nhiên d ( d khác 0 ) 

Như vậy thì ab chia hết cho d , do đó hiệu ( ab + 4 ) - ab = 4 cũng chia hết cho d

=> d = { 1 ; 2 ; 4 }

Nhưng đầu bài đã nói a là 1 số tự nhiên lẻ => a và ab + 4 là các số nguyên tố cùng nhau 

 Gọi k là ước số của a và ab+4 
Do a lẻ => k lẻ 
Ta có:

      ab+4=kp (1) 
      a=kq (2) 
Thay (2) vào (1) 
=> kqb+4 =kp 
=> k(p-qb)=4 
=> p-qb =4/k 
do p-qb nguyên => k là ước lẻ của 4 => k=1 
Vậy a và ab+4 nguyên tố cùng nhau

13 tháng 2 2019

Bạn tìm trên mạng rồi vào câu hỏi của Messi ấy.

Có một bạn trả lời mà được Online Math lựa chọn luôn đó.

3 tháng 8 2023

Để chứng minh rằng √(a-b) và √(3a+3b+1) là các số chính phương, ta sẽ điều chỉnh phương trình ban đầu để tìm mối liên hệ giữa các biểu thức này. Phương trình ban đầu: 2^(2+a) = 3^(2+b) Ta có thể viết lại phương trình theo dạng: (2^2)^((1/2)+a/2) = (3^2)^((1/2)+b/2) Simplifying the exponents, we get: 4^(1/2)*4^(a/2) = 9^(1/2)*9^(b/2) Taking square roots of both sides, we have: √4*√(4^a) = √9*√(9^b) Simplifying further, we obtain: 22*(√(4^a)) = 32*(√(9^b)) Since (√x)^y is equal to x^(y/), we can rewrite the equation as follows: 22*(4^a)/ = 32*(9^b)/ Now let's examine the expressions inside the square roots: √(a-b) can be written as (√((22*(4^a))/ - (32*(9^b))/)) Similarly, √(3*a + 3*b + ) can be written as (√((22*(4^a))/ + (32*(9^b))/)) We can see that both expressions are in the form of a difference and sum of two squares. Therefore, it follows that both √(a-b) and √(3*a + 3*b + ) are perfect squares.