Tính a) 2x/x+5 + 10/x+5 b) x+2/x-2 - x-2/x+2 + 16/x^2-4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9) Ta có: \(\dfrac{2x+5}{x+3}+1=\dfrac{4}{x^2+2x-3}-\dfrac{3x-1}{1-x}\)
\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)+x^2+2x-3=4+\left(3x-1\right)\left(x+3\right)\)
\(\Leftrightarrow2x^2-2x+5x-5+x^2+2x-3-4-3x^2-10x+x+3=0\)
\(\Leftrightarrow-4x=9\)
hay \(x=-\dfrac{9}{4}\)
10) Ta có: \(\dfrac{x-1}{x+3}-\dfrac{x}{x-3}=\dfrac{7x-3}{9-x^2}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3-7x}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(x^2-4x+3-x^2-3x-3+7x=0\)
\(\Leftrightarrow0x=0\)(luôn đúng)
Vậy: S={x|\(x\notin\left\{3;-3\right\}\)}
11) Ta có: \(\dfrac{5+9x}{x^2-16}=\dfrac{2x-1}{x+4}+\dfrac{3x-1}{x-4}\)
\(\Leftrightarrow\dfrac{\left(2x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\dfrac{\left(3x-1\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{9x+5}{\left(x-4\right)\left(x+5\right)}\)
Suy ra: \(2x^2-9x+4+3x^2+12x-x-4-9x-5=0\)
\(\Leftrightarrow5x^2-7x=0\)
\(\Leftrightarrow x\left(5x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{7}{5}\end{matrix}\right.\)
12) Ta có: \(\dfrac{2x}{2x-1}+\dfrac{x}{2x+1}=1+\dfrac{4}{\left(2x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow\dfrac{2x\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{x\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{4x^2-1+4}{\left(2x-1\right)\left(2x+1\right)}\)
Suy ra: \(4x^2+2x+2x^2-x-4x^2-3=0\)
\(\Leftrightarrow2x^2+x-3=0\)
\(\Leftrightarrow2x^2+3x-2x-3=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=1\end{matrix}\right.\)
a/Ta có: M(x)+N(x) = (2x5 - 4x3 + 2x2 + 10x - 1) + (-2x5 + 2x4 + 4x3 + x2 + x - 10)
= 2x5 - 2x5 - 4x3 + 4x3 + 2x4 + 2x2 + x2 + 10x + x -1 - 10
= 2x4 + 3x2 + 11x - 11
b/ Ta có: A(x) = N(x)-M(x) = (-2x5 + 2x4 + 4x3 + x2 + x - 10) - (2x5 - 4x3 + 2x2 + 10x - 1)
= -2x5 - 2x5 + 2x4 + 4x3 + 4x3 + x2 - 2x2 + x - 10x -10 + 1
= -2x5 + 2x4 + 8x3 - x2 - 9x -9
a)\(\frac{2x}{x+5}+\frac{10}{x+5}=\frac{2x+10}{x+5}=\frac{2\left(x+5\right)}{x+5}=2\)
b)\(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{x^2-4}=\frac{\left(x+2\right)^2-\left(x-2\right)^2+16}{\left(x-2\right)\left(x+2\right)}=\frac{8x+16}{\left(x-2\right)\left(x+2\right)}\)\(=\frac{8\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{8}{x-2}\)
a) \(\frac{2x}{x+5}+\frac{10}{x+5}\)=\(\frac{2x+10}{x+5}\)=\(\frac{2\left(x+5\right)}{x+5}\)=\(2\)
b)\(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{x^2-4}\)=\(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{\left(x-2\right)\left(x+2\right)}\)
=\(\frac{\left(x+2\right)^2-\left(x-2\right)^2+16}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{\left(x+2-x+2\right)\left(x+2+x-2\right)+16}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{4\times2x+16}{\left(x-2\right)\left(x+2\right)}\)
=\(\frac{8x+16}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{8\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{8}{x-2}\)