K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2017

Giúp mình nha !

GẤP LẮM!

1 tháng 2 2021

\(d=\left(2n+1,\frac{n^2+n}{2}\right)=\left(2n+1,n^2+n\right)\text{vì }2n+1\text{ lẻ}\)

\(\Rightarrow2n^2+2n-2n^2-n\text{ chia hết cho d hay:}n\text{ chia hết cho d do đó: }2n+1-2n\text{ chia hết cho d }nên:\)

1 chia hết cho d nên: d=1.

ta có điều phải chứng minh.

Bài 1: Gọi d=ƯCLN(3n+11;3n+2)

=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)

=>\(3n+11-3n-2⋮d\)

=>\(9⋮d\)

=>\(d\in\left\{1;3;9\right\}\)

mà 3n+2 không chia hết cho 3

nên d=1

=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau

Bài 2:

a:Sửa đề: \(n+15⋮n-6\)

=>\(n-6+21⋮n-6\)

=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)

mà n>=0

nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)

b: \(2n+15⋮2n+3\)

=>\(2n+3+12⋮2n+3\)

=>\(12⋮2n+3\)

=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)

=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)

mà n là số tự nhiên

nên n=0

c: \(6n+9⋮2n+1\)

=>\(6n+3+6⋮2n+1\)

=>\(2n+1\inƯ\left(6\right)\)

=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)

mà n là số tự nhiên

nên \(n\in\left\{0;1\right\}\)

23 tháng 6 2015

Gọi ƯCLN(2n+3;n+2)=d

Ta có: 2n+3 chia hết cho d;n+2 chia hết cho d

=>2n+3 chia hết cho d; 2(n+2)chia hết cho d

=> 2n+3 chia hết cho d;2n+4 chia hết cho d

=>[2n+4-(2n+3)]chia hết cho d

=>2n+4-2n-3 chia hết cho d

=>1 chia hết cho d hay d=1=> ƯCLN(2n+3;n+2)=1

Vậy với mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là số nguyên tố cùng nhau

Chúc bạn học tốt!^_^

8 tháng 6 2016

Gọi ƯCLN(2n+3;n+2)=d

Ta có: 2n+3 chia hết cho d;n+2 chia hết cho d

=>2n+3 chia hết cho d; 2(n+2)chia hết cho d

=> 2n+3 chia hết cho d;2n+4 chia hết cho d

=>[2n+4-(2n+3)]chia hết cho d

=>2n+4-2n-3 chia hết cho d

=>1 chia hết cho d hay d=1=> ƯCLN(2n+3;n+2)=1

Vậy với mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là số nguyên tố cùng nhau

Chúc bạn học tốt!^_^

trong câu hỏi tương tự đó bn!!!!

787685999679

23 tháng 12 2017

a) Gọi ƯCLN (n + 3; n + 2) = d.

Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d

Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.

b) Gọi ƯCLN (3n+4; 3n + 7) = đ.

Ta thấy (3n + 4) chia hết cho d;(3n+7) chia hết cho d =>[(3n+7) - (3n + 4)] chia hết cho d =>3 chia hết cho d nên

d = 1 hoặc d = 3.

Mà (3n + 4) không chia hết cho 3; (3n + 7) không chia hết cho 3 nên d = 1. Ta có điều phải chứng minh.

c) Gọi ƯCLN (2n + 3; 4n + 8) = d.

Ta thấy (2n + 3) chia hết cho d ; (4n + 8) chia hết cho d => [(4n + 8) - 2.(2n +3)] chia hết cho d => 2 chia hết cho d

nên d = 1 hoặc d = 2.

Mà (2n+3) không chia hết cho 2 nên d = 1. Ta có điều phải chứng minh.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

10 tháng 12 2021

Gọi ƯCLN(2n+3;n+2)=d

Ta có: 2n+3 chia hết cho d;n+2 chia hết cho d

=>2n+3 chia hết cho d; 2(n+2)chia hết cho d

=> 2n+3 chia hết cho d;2n+4 chia hết cho d

=>[2n+4-(2n+3)]chia hết cho d

=>2n+4-2n-3 chia hết cho d

=>1 chia hết cho d hay d=1=> ƯCLN(2n+3;n+2)=1

Vậy với mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là số nguyên tố cùng nhau