Tìm 2 số tự nhiên a , b biết a < b và BCNN ( a, b ) - UCLN ( a , b ) = 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
Ta có: $ab=BCNN(a,b).ƯCLN(a,b)$
$\Rightarrow 1200=3.ƯCLN(a,b).ƯCLN(a,b)$
$\Rightarrow ƯCLN(a,b).ƯCLN(a,b)=400=20.20$
$\Rightarrow ƯCLN(a,b)=20$
Đặt $a=20x, b=20y$ với $x,y$ là 2 số nguyên tố cùng nhau.
Khi đđ:
$ab=20x.20y$
$\Rightarrow 1200=400xy\Rightarrow xy=3$
Kết hợp với $x,y$ nguyên tố cùng nhau $\Rightarrow (x,y)=(1,3), (3,1)$
$\Rightarrow (a,b)=(20, 60), (60,20)$
b. Đề không rõ ràng. Bạn viết lại nhé.
Vì \(BCNN\left(a,b\right)=300\) và \(ƯCLN\left(a,b\right)=15\)
\(\Leftrightarrow a.b=300.15=4500\)
Vì \(ƯCLN\left(a,b\right)=15\) nên \(a=15m\) và \(b=15n\) với \(ƯCLN=\left(m,n\right)=1\)
Vì \(a+15=b\Rightarrow15m+15=15n\Rightarrow15\left(m+1\right)=15n\)
\(\Leftrightarrow m+1=n\)
Mà \(a.b=4500\Rightarrow15m.15n=4500\Rightarrow15.15.m.n=4500\)
\(\Leftrightarrow m.n=20\)
\(\Leftrightarrow m=1\) và \(n=20\) hoặc \(m=4\) và \(n=5\)