Chứng tỏ :A=(n+1).(3n+2)chia hết cho 2 với (n\(\varepsilon\)N*)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A (n) = n^2 + 3n = n( n + 3 )
(+) n là số chẵn => n = 2k thay vào ta có
2k ( 2k + 3 ) luôn luôn chia hết cho 2
(+) n là số lẻ => n = 2k +1 thay vào ta có :
n ( n+ 3 ) = ( 2k + 1 )( 2k + 4) = 2 ( 2k + 1 )( k + 2) luô luôn chia hết cho 2
VẬy A (n) luôn luôn chia hết cho 2
CÁi sau tương tự
câu a) n^2+ 3n=n^2 +1n+ 2n
=n(n+1)+2n
(mà n (n +1) là tích của 2 số tự nhiên liên tiêp
nên n(n+1) chia hết cho 2 và 2n cũng chia hết cho 2 )
=>n(n+1) chia hết cho 2
câu b)n (n +1) là tích của 2 số tự nhiên liên tiêp
nên n(n+1) chia hết cho 2
* Nếu n chẵn ( n = 2k ) => 3n + 2 là chẵn
=> 3n + 2 chia hết cho 2
=> A chia hết cho 2
* Nếu n lẻ ( n = 2k + 1 ) => n + 1 chẵn
=> n + 1 chia hết cho 2
=> A chia hết cho 2
Vậy A = ( n + 1 . ( 3n + 2 ) chia hết cho 2 với mọi n thuộc N
Ta có:
a) ( 3 n + 1 ) 2 - 25 = 3(3n - 4)(n + 2) chia hết cho 3;
b) ( 4 n + 1 ) 2 - 9 = 8(2n - 1)(n +1) chia hết cho 8.
a, Ta thấy: 3 n + 2 + 3 n = 3 n . 3 2 + 3 n
= 3 n 3 2 + 1 = 3 n . 10 chia hết cho 10
=> 3 n + 2 + 3 n chia hết cho 10, n ∈ N
b, 7 n + 4 - 7 n = 7 n . 7 4 - 7 n
7 n 7 4 - 1 = 7 n . 2400 chia hết cho 30
=> 7 n + 4 - 7 n chia hết cho 30, n ∈ N
Ta có hai trường hợp :
TH1 : nếu n lẻ => 3n lẻ => 3n + 2015 chẵn => ( 3n + 2015 ) * ( 3n + 2016 ) chia hết cho 2
TH2 : nêu n chẵn => 3n chẵn => 3n + 2016 chẵn => ( 3n + 2015 ) * ( 3n + 2016 ) chia hết cho 2
Với n thuộc N thì A=(3n+2015)(3n+2016) là tích của 2 số tự nhiên liên tiếp nên A chia hết cho 2.
(Có thể xét 2 th n là số chẵn và n là số lẻ để chứng minh)
a)n2+3n-13 chia hết cho n+3
n2+3n+9-22chia hết cho n+3
n2+3(n+3)-22 chia hết cho n+3(cái ngoặc đơn mình giảng cho bạn thôi nhé:3n+9=3(n+3)vì 9=3.3 áp dụng tính chất phếp nhân phân phối với phếp cộng đặt 3 ra ngoài trong ngoặc còn n+3)
n2-22 chia hết cho n+3 (nhớ là cái ngoặc đơn không được viết vào nhé:nếu 1 số chia hết cho số kia thì tích của chúng cũng chia hết đúng không thì còn lại n2-22 chia hết cho n+3)
(+) với n là số lẻ
=> n + 1 là số chẵn => ( n + 1) luôn chia hết cho 2 => ( n + 1)(3n+ 2) luôm chia hết cho 2 (1)
(+) với n là số chẵn
=> 3.n là số cahwnx =>3.n+2 là số chẵn => (3.n+2)(n + 1) là số chẵn=\>(3n+2)(n+ 1 ) chia hết cho 2 (2)
Từ(1) và (2) => A luôn luôn chia hết cho 2