tính S = 1 + 3 + 3 mũ 2 +..... + 3 mũ 2017
giúp mình với cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+3+3^2+...+3^{2002}\)
\(3A=3+3^2+3^3+...+3^{2003}\)
\(2A=3A-A=3^{2003}-1\Rightarrow A=\dfrac{3^{2003}-1}{2}\)
\(S=1+2+2^2+2^3+...+2^{2020}+2^{2021}\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{2020}+2^{2021}\right)\)
\(=3+2^2\left(1+2\right)+...+2^{2020}\left(1+2\right)\)
\(=3+2^2.3+...+2^{2020}.3⋮3\)
VẬY \(S⋮3\)
Trả lời :...........................................
SCSH: (2021 - 1) : 1 = 2020
Tổng: (2021 + 1) : 2 = 1011
Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
k nhé
\(^{3^2}\).\(^{3^3}\)+\(2^3\).\(2^2\)
(\(^{2^3}\).\(^{3^3}\))+(\(2^2\).\(^{3^2}\)
=275
Mình làm ngắn gọn nhé.
\(A=1+2+2^2+...+2^{50}\)
\(\Rightarrow2A=2+2^2+...+2^{51}\)
\(\Rightarrow2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}\)
\(\Rightarrow A=2^{51}-1\)
\(B=1+3+...+3^{66}\)
\(3B=3+3^2+...+3^{67}\)
\(2B=3+3^2+...+3^{67}-1-3-...-3^{66}\)
\(2B=3^{67}-1\)
\(B=\frac{3^{67}-1}{2}\)
S = 1 + 3 + 3² + ... + 3¹⁰⁰⁰
⇒ 3S = 3 + 3² + 3³ + ... + 3¹⁰⁰¹
⇒ 2S = 3S - S
= (3 + 3² + 3³ + ... + 3¹⁰⁰¹) - (1 + 3 + 3² + ... + 3¹⁰⁰⁰)
= 3¹⁰⁰¹ - 1
⇒ S = (3¹⁰⁰¹ - 1) : 2
3S=3+32+33+...+31001
3S-S=(3+32+33+...+31001)-(1+3+32+...+31000)
2S= 31001-1
S=(31001-1):2
Ta có : A = 30 + 31 + 32 + 33 + .... + 350
=> 3A = 31 + 32 + 33 + 34 + ... + 351
Khi đó 3A - A = (31 + 32 + 33 + 34 + ... + 351) - (30 + 31 + 32 + 33 + .... + 350)
=> 2A = 351 - 30
=> A = \(\frac{3^{51}-1}{2}\)
Khi đó A = \(\frac{3^{51}-1}{2}=\frac{3^3.3^{48}-1}{2}=\frac{27.\left(3^4\right)^{12}-1}{2}=\frac{27.\left(...1\right)^{12}-1}{2}\)
\(=\frac{\left(...7\right)-1}{2}=\frac{\left(...6\right)}{2}=\left(...3\right)\)
Vậy A tận cùng là 3
S = 1 + 3 + 32 + 33 + ..... + 32017
\(\Rightarrow\)3S = 3 + 32 + 33 + 34 + ...... + 32018
\(\Rightarrow\)3S - S = (3 + 32 + 33 + 34 + ...... + 32018) - (1 + 3 + 32 + 33 + ..... + 32017)
\(\Rightarrow\)2S = 32018 - 1
\(\Rightarrow\)S = \(\frac{3^{2018}-1}{2}\)
S = 1 + 3 + 3^2 + ... + 3^2017
3S = 3 + 3^2 + 3^3 + ... + 3^2018
3S - S = 2S = ( 3 + 3^2 + 3^3 + ... + 3^2018 ) - ( 1 + 3 + 3^2 = ... + 3^2017 )
2S = 3^2018 - 1
S = 3^2018 - 1 / 2