2n+7chia hết cho n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có: 2n+7 chia hết cho n+1
=>2n+2+5 chia hết cho n+1
=>2.(n+1)+5 chia hết cho n+1
=>5 chia hết cho n+1
=>n+1=Ư(5)=(-1,-5,1,5)
=>n=(-2,-6,0,4)
Vậy n=-2,-6,0,4

2n+7 = 2(n+1) +5 chia hết cho n+1 khi 5 chia hết cho n+1
n+1 thuộc Ư(5) = {1;5}
+ n+1 = 1 => n =0
+ n+1 =5 => n =4
Vậy n= 0 ;hoặc n = 4

2n + 7 chia hết cho 3n - 1
3(2n + 7) chia hết cho 3n - 1
6n + 21 chia hết cho 3n - 1
6n - 2 + 23 chia hết cho 3n - 1
2(3n - 1) + 23 chia hết cho 3n - 1
=> 23 chia hết cho 3n - 1
=> 3n - 1 thuộc Ư(23) = {1 ; 23}
Xét 2 trường hợp , ta có :
3n - 1 = 1 => 3n = 2 => n = 2/3
3n - 1 = 23 => 3n = 24 => n = 8
3n + 1 chia hết cho 11 - 2n
11 - 3n + 1 - 11 chia hết cho 11 - 2n
11 - 2n - n - 10 chia hết cho 11 - 2n
=> n - 10 chia hết cho 11 - 2n
=> 22(n - 10) chia hết cho 11 - 2n
=> 22n - 220 chia hết cho 11 - 2n
=> 121 - 22n - 220 - 121 chia hết cho 11 - 2n
=> 11(11 - 2n) - 220 - 121 chia hết cho 11 - 2n
=> 220 - 121 chia hết cho 11 - 2n
=> 99 chia hết cho 11 - 2n
=> 11 - 2n thuộc Ư(99) = {1 ; 9 ; 11; 99}
Còn lại xét 4 trường hợp giống bài trên nha
3(2n + 7) chia hết cho 3n - 1
6n + 21 chia hết cho 3n - 1
6n - 2 + 23 chia hết cho 3n - 1
2(3n - 1) + 23 chia hết cho 3n - 1
=> 23 chia hết cho 3n - 1
=> 3n - 1 thuộc Ư(23) = {1 ; 23}
Xét 2 trường hợp , ta có :
3n - 1 = 1 => 3n = 2 => n = 2/3
3n - 1 = 23 => 3n = 24 => n = 8
3n + 1 chia hết cho 11 - 2n
11 - 3n + 1 - 11 chia hết cho 11 - 2n
11 - 2n - n - 10 chia hết cho 11 - 2n
=> n - 10 chia hết cho 11 - 2n
=> 22(n - 10) chia hết cho 11 - 2n
=> 22n - 220 chia hết cho 11 - 2n
=> 121 - 22n - 220 - 121 chia hết cho 11 - 2n
=> 11(11 - 2n) - 220 - 121 chia hết cho 11 - 2n
=> 220 - 121 chia hết cho 11 - 2n
=> 99 chia hết cho 11 - 2n
=> 11 - 2n thuộc Ư(99) = {1 ; 9 ; 11; 99}
chúc bn hok tốt @_@

a) Ta có: \(2n+1=2n-4+5\)
mà \(\left(2n-4\right)⋮\left(n-2\right)\Rightarrow5⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2\right)\inƯ\left(5\right)\)
hồi trưa mk phải đi học xl bn nha mấy câu còn lại nè
b) Ta có: \(2n-5=2n+2-7\)
mà \(\left(2n+2\right)⋮\left(n+1\right)\Rightarrow7⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(7\right)\)


2n+1 chia hết cho n-4 thì \(\frac{2n+1}{n-4}\)=\(\frac{2\left(n-4\right)+9}{n-4}=2+\frac{9}{n-4}\)là số nguyên => n-4 là ước của 9
9 có các ước là 1;-1;3;-3;9;-9
n-4=1 =>n=5 ; n-4=-1 =>n=3 ; n-4 =3 =>n=7 ; n-4 = -3 => n=1 ; n-4 =9 => n=13 ; n-4 =-9 => n =-5
6n+7chia hết cho 3n +2 thì \(\frac{6n+7}{3n+2}=\frac{2\left(3n+2\right)+3}{3n+2}=2+\frac{3}{3n+2}\)là số nguyên hay 3n+2 là ước của 3
3 có các ước là 1;-1;3;-3
3n+2=1 =>n =-1/3 ; 3n+2 =-1 => n= -1 ; 3n+2 =3 => n=1/3 ; 3n+2 = -3 =>2 =-5/3

cho n+1chia hết cho 9
Chứng tỏ 2n-7chia hết cho 9
giải
2n-7=2n+2-9=2(n+1)-9
ta có: n+1 chia hết cho 9=>2(n+1) chia hết cho 9
9 chia hết cho 9
=>2(n+1)-9 chia hết cho 9
vậy 2n-7 chia hết cho 9
=>2(n+1)chia hết cho 9
=>2n+2chia hết cho 9
=>2n+2-(2n-7)=9 chia hết cho 9
=>2n-7chia hết cho 9

2n+7 \(⋮\)n+2
=> n+2 \(⋮\)n+2
=> ( 2n +7) - (n+2) \(⋮\)n+2
=> ( 2n+7) - 2(n+2) \(⋮\)n+2
=> 2n+7 - 2n -4 \(⋮\)n+2
=> 3 \(⋮\)n+2
=> n+2 thuộc Ư(3)= { 1;3}
=> n thuộc { -1; 1}
Vậy...
Vì n + 2 chia hết ( n + 2 )
\(\Rightarrow\)2n + 4 chia hết ( n + 2 )
\(\Rightarrow\)( 2n + 7 ) - ( 2n + 4 ) chia hết ( n + 2 )
\(\Rightarrow\) 3 chia hết ( n + 2 )
\(\Rightarrow\)n + 2 \(\in\) Ư(3) = { 1 ; 2 }
\(\Rightarrow\)n \(\in\) { - 1 ; 0 }
Vì n \(\in\) N
\(\Rightarrow\)n = 0 .
đề là gì vậy
Vì ( 2n + 7 ) chia hết cho ( n + 1 )
\(\Rightarrow\)\(\left[2n+7-2\left(n+1\right)\right]⋮\left(n+1\right)\)
\(\Rightarrow\)5 chia hết cho n + 1
\(\Leftrightarrow\)\(\orbr{\begin{cases}n+1=1\\n+1=5\end{cases}\Leftrightarrow\orbr{\begin{cases}n=0\\n=4\end{cases}}}\)
Vậy \(n\in\left\{0;4\right\}\)