Cho các số dương x,y thoả mãn điểu kiện \(x^2+y^3\ge x^3+y^4\) . Chứng minh: \(x^3+y^3\le x^2+y^2\le x+y\le2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x^2+y^3\ge x^3+y^4\Leftrightarrow x^2+y^2+y^3\ge x^3+y^2+y^4\)
Áp dụng bđt AM-GM ta có \(y^4+y^2\ge2y^3\)
\(\Rightarrow x^2+y^3+y^2\ge x^3+2y^3\)
\(\Rightarrow x^3+y^3\le x^2+y^2\left(1\right)\)
Áp dụng bđt Cauchy - Schwarz ta có
\(\left(x^2+y^2\right)^2\le\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\left[\left(\sqrt{x^3}\right)^2+\left(\sqrt{y^3}\right)^2\right]=\left(x+y\right)\left(x^3+y^3\right)\)
\(\le\left(x+y\right)\left(x^2+y^2\right)\)
\(\Rightarrow x^2+y^2\le x+y\left(2\right)\)
Lại có
\(\left(x+y\right)^2\le2\left(x^2+y^2\right)\le2\left(x+y\right)\)
\(\Rightarrow x+y\le2\left(3\right)\)
Từ (1),(2),(3) => đpcm
Đối với bài này ta cũng có thể chia các khoảng giá trị để chứng minh
(Nhưng hơi dài và khó hiểu nên mình k làm )
Học tốt!!!!!!!!!
Lời giải:
Áp dụng BĐT AM-GM:
\(x^2+y^3\geq x^3+y^4\)
\(\Rightarrow x^2+y^2+y^3\geq x^3+y^4+y^2\geq x^3+2\sqrt{y^6}=x^3+2y^3\)
\(\Rightarrow x^2+y^2\geq x^3+y^3(1)\)
Áp dụng BĐT Bunhiacopxky:
\((x+y^2)(x^2+y^3)\geq (x+y^2)(x^3+y^4)\geq (x^2+y^3)^2\)
\(\Rightarrow x+y^2\geq x^2+y^3\)
\(\Rightarrow x+y+y^2\geq x^2+y^3+y\geq x^2+2\sqrt{y^4}=x^2+2y^2\) (AM-GM)
\(\Rightarrow x+y\geq x^2+y^2\) (2)
Lại áp dụng BĐT AM-GM:
\(x^2+y^2\geq \frac{(x+y)^2}{2}\) . Suy ra \(x+y\geq x^2+y^2\geq \frac{(x+y)^2}{2}\)
\(\Rightarrow 1\geq \frac{x+y}{2}\Rightarrow x+y\leq 2(3)\)
Từ $(1),(2),(3)$ suy ra \(x^3+y^3\leq x^2+y^2\leq x+y\leq 2\)
Dấu bằng xảy ra khi $x=y=1$
Xét \(x,y\ge1\)
\(\Rightarrow\left\{{}\begin{matrix}x^2\le x^3\\y^2\le y^4\end{matrix}\right.\)
\(\Leftrightarrow x^2+y^2\le x^3+y^4\)(không thoả mãn)
Xét \(0< x,y\le1\)
\(\Rightarrow x^2\ge x^3;y^2\ge y^4\)
\(\Leftrightarrow x^2+y^2\ge x^3+y^4\)(thoả mãn)
\(\Rightarrow0< x,y\le1\) (đúng)
\(\Rightarrow\left\{{}\begin{matrix}x^3\le x^2\le x\le1\\y^3\le y^2\le y\le1\end{matrix}\right.\)
\(\Leftrightarrow x^3+y^3\le x^2+y^2\le x+y\le2\)
Dấu "=" xảy ra khi x = y = 1 .
Với mọi số thực ta luôn có:
`(x-y)^2>=0`
`<=>x^2-2xy+y^2>=0`
`<=>x^2+y^2>=2xy`
`<=>(x+y)^2>=4xy`
`<=>(x+y)^2>=16`
`<=>x+y>=4(đpcm)`
\(\dfrac{1}{x+3}+\dfrac{1}{y+3}=\dfrac{x+3+y+3}{\left(x+3\right)\left(y+3\right)}\)
\(=\dfrac{x+y+6}{3x+3y+13}\)(vì \(xy=4\))
=> \(\dfrac{x+y+6}{3x+3y+13}\)≤\(\dfrac{2}{5}\)
<=> \(5\left(x+y+6\right)\)≤\(2\left(3x+3y+13\right)\)
<=>\(6x+6y+26-5x-5y-30\)≥\(0\)
<=> \(x+y-4\)≥\(0\)
Áp dụng BĐT AM-GM \(\dfrac{a+b}{2}\)≥\(\sqrt{ab}\)
Ta có \(\dfrac{x+y}{2}\)≥\(\sqrt{xy}\)
<=>\(x+y\) ≥ 2\(\sqrt{xy}\)
=>2\(\sqrt{xy}-4\)≥\(0\)
<=> \(4-4\)≥0
<=>0≥0 ( Luôn đúng )
Vậy \(\dfrac{1}{x+3}+\dfrac{1}{y+3}\)≤\(\dfrac{2}{5}\)
Sai đề rồi nha bạn! Điều kiện: \(x^2+y^3\ge x^3+y^4\)
Sử dụng bất đẳng thức \(C-S,\) ta có:
\(\left(x^3+y^3\right)^2=\left(x\sqrt{x}.x\sqrt{x}+y^2.y\right)^2\le\left(x^3+y^4\right)\left(x^3+y^2\right)\le\left(x^2+y^3\right)\left(x^3+y^2\right)\)
\(\le\left(\frac{x^2+y^3+x^3+y^2}{2}\right)^2\)
\(\Rightarrow\) \(x^3+y^3\le\frac{x^2+y^3+x^3+y^2}{2}\) \(\Leftrightarrow\) \(x^3+y^3\le x^2+y^2\) \(\left(1\right)\)
Lại có: \(\left(x^2+y^2\right)^2=\left(x\sqrt{x}.\sqrt{x}+y\sqrt{y}.\sqrt{y}\right)^2\le\left(x^3+y^3\right)\left(x+y\right)\le\left(x^2+y^2\right)\left(x+y\right)\)
\(\Rightarrow\) \(x^2+y^2\le x+y\) \(\left(2\right)\)
Mặt khác, từ \(\left(2\right)\) với lưu ý rằng \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) \(\left(i\right)\)và \(x,y\in R^+\) , ta thu được:
\(x^2+y^2\le\sqrt{2\left(x^2+y^2\right)}\) \(\Leftrightarrow\) \(x^2+y^2\le2\) \(\left(3\right)\)
nên do đó, \(\left(i\right)\) suy ra \(x+y\le\sqrt{2.2}=2\) \(\left(4\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\) và \(\left(4\right)\) ta có đpcm
Ta có \(x+y\le1\Leftrightarrow1-x\ge y>0\Leftrightarrow0< x< 1\)
Giả sử \(x^2-\dfrac{3}{4x}-\dfrac{x}{y}\le-\dfrac{9}{4}\)
\(\Leftrightarrow4x^2+9\le\dfrac{3}{x}+\dfrac{4x}{y}\\ \Leftrightarrow\dfrac{4x}{1-x}+\dfrac{3}{x}\ge4x^2+9\\ \Leftrightarrow\dfrac{4x^2+3\left(1-x\right)-x\left(4x^2+9\right)\left(1-x\right)}{x\left(1-x\right)}\ge0\\ \Leftrightarrow\dfrac{4x^4-4x^3+13x^2-12x+3}{x\left(1-x\right)}\ge0\\ \Leftrightarrow\dfrac{\left(x^2+3\right)\left(2x-1\right)^2}{x\left(1-x\right)}\ge0\)
Vì \(x>0;1-x>0\) nên BĐT trên luôn đúng
Vậy ta được đpcm
Dấu \("="\Leftrightarrow x=y=\dfrac{1}{2}\)
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
Ta có: \(\left(y^2-y\right)+2\ge0\Rightarrow2y^3\le y^4+y^2\)
\(\Rightarrow\left(x^3+y^2\right)+\left(x^2+y^3\right)\le\left(x^2+y^2\right)+\left(y^4+x^3\right)\)
Mà \(x^3+y^4\le x^2+y^3\)
\(\Rightarrow x^3+y^3\le x^2+y^2\left(1\right)\)
Lại có: \(x\left(x-1\right)^2\ge0;y\left(y+1\right)\left(y-1\right)^2\ge0\)
\(\Rightarrow x\left(x-1\right)^2+y\left(y+1\right)\left(y-1\right)^2\ge0\)
\(\Rightarrow x^3-2x^2+x+y^4-y^3-y^2+y\ge0\)
\(\Rightarrow\left(x^2+y^2\right)+\left(x^2+y^3\right)\le\left(x+y\right)+\left(x^3+y^4\right)\)
Mà \(x^2+y^3\ge x^3+y^4\)
\(\Rightarrow x^2+y^2\le x+y\left(2\right)\)
Và \(\left(x+1\right)\left(x-1\right)\ge0;\left(y-1\right)\left(y^3-1\right)\ge0\)
\(x^3-x^2-x+1+y^4-y-y^3+1\ge0\)
\(\Rightarrow\left(x+y\right)+\left(x^2+y^3\right)\le2+\left(x^3+y^4\right)\)
Mà \(x^2+y^3\ge x^3+y^4\)
\(\Rightarrow x+y\le2\left(3\right)\)
Từ (1), (2), (3) => đpcm