Cho đa thức q(x) = (3x3 - 2x2 + 3x - 4)10 khi khai triển đa thức q(x) ta được đa thức f(x) . Sắp xếp theo thứ tự giảm dần của biến. Tính tổng các hệ số f(x).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chào bạn. Mời bạn tham khảo ứng dụng tự động cân bằng phương trình và từ điển phương trình hóa học trên điện thoại. Android: https://goo.gl/jv8qfC . IOS(Iphone): https://goo.gl/BQ2Kqo . Clip hướng dẫn: https://youtu.be/qDpsKPwPAto . Bạn copy link vào trình duyệt nhé!
Tổng các hệ số của f(x) cũng là tổng các hệ số của q(x)
Tổng hệ số của q(x) là giá trị của q(x) tại x=1
\(q\left(1\right)=\left(3.1^3-2.1^2+3.1-4\right)^{10}=0\)
a. Ta có:
f(x) = -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2
= 2x3 + 3x2 - 2x + 3 (0.5 điểm)
g(x) = 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2
= 2x3 + 3x2 - 7x + 2 (0.5 điểm)
`a,`
`Q(x)=` \(\dfrac{1}{2}x+\dfrac{2}{3}x^3-\dfrac{1}{3}x+\dfrac{5}{2}x^2-\dfrac{2}{3}x^3+1\)
`Q(x)=`\(\left(\dfrac{2}{3}x^3-\dfrac{2}{3}x^3\right)+\dfrac{5}{2}x^2+\left(\dfrac{1}{2}x-\dfrac{1}{3}x\right)+1\)
`Q(x)=`\(\dfrac{5}{2}x^2+\dfrac{1}{6}x+1\)
`b,` Bậc của đa thức: `2`
Hệ số cao nhất: `5/2`
Hệ số tự do: `1`
`c,`
`Q(-6)=`\(\dfrac{5}{2}\cdot\left(-6\right)^2+\dfrac{1}{6}\cdot\left(-6\right)+1\)
`= 5/2*36 -1+1 = 90-1+1=90`
`Q(1)= 5/2*1^2+1/6*1+1 = 5/2+1/6+1=8/3+1=11/3`
`Q(2)=5/2*2^2+1/6*2+1=5/2*4+1/3+1=10+1/3+1=31/3+1=34/3`
Lời giải:
a.
$f(x) =-2x^3+x-1+4x^2-5x+3x^3=(-2x^3+3x^3)+4x^2+(-5x+x)-1$
$=x^3+4x^2-4x-1$
b.
Hệ số tự do: $-1$
Bậc $f(x)$: 3
a: \(M\left(x\right)=9x^4+2x^2-x-6\)
\(N\left(x\right)=-x^4-x^3-2x^2+4x+1\)
b: \(P\left(x\right)=8x^4-x^3+3x-5\)
\(Q\left(x\right)=10x^4+x^3+4x^2-5x-7\)
a: \(F\left(x\right)=x^3+2x^2+3x+4\)
\(G\left(x\right)=x^3-x^2+3x+1\)
b: \(F\left(x\right)+G\left(x\right)=2x^3+x^2+6x+5\)
\(F\left(x\right)-G\left(x\right)=3x^2+3\)
a: f(x)=-x^5-7x^4-2x^3+x^2+4x+9
g(x)=x^5+7x^4+2x^3+2x^2-3x-9
b: H(x)=-x^5-7x^4-2x^3+x^2+4x+9+x^5+7x^4+2x^3+2x^2-3x-9
=3x^2+x
c: H(x)=0
=>x(3x+1)=0
=>x=0 hoặc x=-1/3