K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2021
A) BC chung Góc NBC= góc NCB vì tam giác ABC cân BN=MC (GT) Suy ra tam giác BNC=tam giác CMB Kết luận NC = MB

a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có

BM chung

\(\widehat{ABM}=\widehat{DBM}\)

Do đó: ΔBAM=ΔBDM

Suy ra: BA=BD

Xét ΔBAD có BA=BD

nên ΔBAD cân tại B

mà \(\widehat{ABD}=60^0\)

nên ΔBAD đều

b: Ta có: ΔBAM=ΔBDM

nên MA=MD

Ta có: BA=BD

nên B nằm trên đường trung trực của AD\(\left(1\right)\)

Ta có: MA=MD

nên M nằm trên đường trung trực của AD\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra BM là đường trung trực của AD

c: Xét ΔAME vuông tại A và ΔDMC vuông tại D có 

MA=MD

\(\widehat{AME}=\widehat{DMC}\)

Suy ra: ΔAME=ΔDMC

Suy ra: ME=MC

hay ΔMEC cân tại M

a) Sửa đề: Cm AG vuông góc với BC

Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)

\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AN=NB=AM=MC

Xét ΔNBC và ΔMCB có 

NB=MC(cmt)

\(\widehat{NBC}=\widehat{MCB}\)(hai góc ở đáy của ΔABC cân tại A)

BC chung

Do đó: ΔNBC=ΔMCB(c-g-c)

Suy ra: \(\widehat{NCB}=\widehat{MBC}\)(hai góc tương ứng)

hay \(\widehat{GBC}=\widehat{GCB}\)

Xét ΔGBC có \(\widehat{GBC}=\widehat{GCB}\)(cmt)

nên ΔGBC cân tại G(Định lí đảo của tam giác cân)

Suy ra: GB=GC(hai cạnh bên)

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: GB=GC(cmt)

nên G nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AG là đường trung trực của BC

hay AG\(\perp\)BC(đpcm)

 

a: Xét ΔABN và ΔACM có

AB=AC
\(\widehat{BAN}\) chung

AN=AM

Do đó: ΔABN=ΔACM

Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)

nên ΔIBC cân tại I

c: Ta có: AB=AC
IB=IC

Do đó: AI là đường trung trực của BC(1)

d: Xét ΔABK vuông tại B và ΔACK vuông tại C có

AK chung

AB=AC

Do đó: ΔABK=ΔACK

Suy ra: KB=KC

hay K nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra A,I,K thẳng hàng

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng \(a, \frac {AB+AC}{2}\)\(b,BE+CF < \frac{3}{2}BC\)\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CNBài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH ,...
Đọc tiếp

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng 

\(a, \frac {AB+AC}{2}\)

\(b,BE+CF < \frac{3}{2}BC\)

\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)

Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN

Bài 3 . Cho tam giác ABC , góc B = 45, đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB 

Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .

Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB 

0