Rút gọn tổng sau :
\(A=1+2+2^2+2^3+2^4+...+2^{100}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2A=2+22+23+...+2101
=>2A-A=(2+22+23+...+2101)-(1+2+22+....+2100)
=>A=2101-1
-Quy luật: Nhân mỗi vế của đẳng thức cho số thích hợp để tạo ra đẳng thức mới, khi cộng (hoặc trừ) mỗi vế của mỗi đẳng thức thì sẽ rút gọn bớt.
a) \(A=2-2^2+2^3-2^4+...+2^{99}-2^{100}\)
\(\Rightarrow2A=2^2-2^3+2^4-2^5+...+2^{100}-2^{101}\)
\(\Rightarrow2A+A=2^2-2^3+2^4-2^5+...+2^{100}-2^{101}+\left(2-2^2+2^3-2^4+...+2^{99}-2^{100}\right)\)
\(\Rightarrow A=-2^{101}+2\)
b,c) làm tương tự.
d) \(D=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow3D=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow3D-D=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}-\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow2D=3+\dfrac{1}{3^{100}}\)
\(\Rightarrow2D=\dfrac{3^{101}+1}{3^{100}}\Rightarrow D=\dfrac{3^{101}+1}{2.3^{100}}\)
e) làm tương tự nhưng đổi thành cộng.
a,M=2^0-2^1+2^2-2^3+2^4-2^5+.....+2^2012
2M=2^1-2^2+2^3-2^4+2^5-2^5+......-2^2012+2^2013
3M=2^0+2^2013
M=(2^0+2^2013)÷3
Vậy.......
b,N=3-3^2+3^3-3^4+3^5-3^6+.....+3^2011-3^2012
3N=3^2-3^3+3^4-3^5+3^6-3^7+......+3^2012-3^2013
4N=3-3^2013
N=(3-3^2013)÷4
Vậy........
K tao nhé ko lên lớp tao đánh m😈😈😈
Đặt A = 2 + 22 + 23 + 24 + ... + 299
2A = 22 + 23 + 24 + 25 + ... + 2100
2A - A = (22 + 23 + 24 + 25 + ... + 2100) - (2 + 22 + 23 + 24 + ... + 299)
A = 2100 - 2
\(A=1+2+2^2+...+2^{51}\)
\(2A=2+2^2+2^3+...+2^{52}\)
\(2A-A=\left(2+2^2+2^3+...+2^{52}\right)-\left(1+2+2^2+...+2^{51}\right)\)
\(A=2^{52}-1\)
\(B=5+5^2+5^3+...+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{101}\)
\(5B-B=\left(5^2+5^3+5^4+...+5^{101}\right)-\left(5+5^2+5^3+...+5^{100}\right)\)
\(4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
\(\Rightarrow4A=2^2+2^4+2^6+...+2^{102}\\ \Rightarrow4A-A=2^2+2^4+...+2^{102}-1-2^2-2^4-...-2^{100}\\ \Rightarrow3A=2^{102}-1\\ \Rightarrow A=\dfrac{2^{102}-1}{3}\)
A= 1 + 2\(^2\) + 2\(^4\) +...+ 2\(^{100}\)
⇔2\(^2\)A=2\(^2\)+2\(^4\)+2\(^6\)+2\(^8\)+....+2\(^{100}\)+2\(^{102}\)
⇔4A−A=(2\(^2\)+2\(^4\)+2\(^6\)+2\(^8\)+....+2\(^{100}\)+2\(^{102}\)) − (1+2\(^2\)+2\(^4\)+2\(^6\)+....+2\(^{98}\)+2\(^{100}\))
⇔3A=2\(^{102}\)−1
⇔S=\(\dfrac{2^{102}-1}{3}\)
\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)
\(2A=2+2^2+2^3+...+2^{51}\)
\(2A-A=A=2^{51}-2^0\)
\(B=5+5^2+5^3+...+5^{99}+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)
\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)
\(3C+C=4C=3^{2011}+3\)
\(C=\frac{3^{2011}+3}{4}\)
\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)
\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)
\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)
\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)
\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)
Xét hàm:
\(f\left(x\right)=\dfrac{1}{x}+\dfrac{1}{x^2}+...+\dfrac{1}{x^{100}}\)
\(\Rightarrow f'\left(x\right)=-\dfrac{1}{x^2}-\dfrac{2}{x^3}-\dfrac{3}{x^4}-...-\dfrac{100}{x^{101}}=-P\) (1)
Mặt khác \(f\left(x\right)\) là tổng cấp số nhân với \(\left\{{}\begin{matrix}n=100\\u_1=\dfrac{1}{x}\\q=\dfrac{1}{x}\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)=u_1.\dfrac{1-q^{100}}{1-q}=\dfrac{1}{x}.\dfrac{1-\dfrac{1}{x^{100}}}{1-\dfrac{1}{x}}=\dfrac{1-\dfrac{1}{x^{100}}}{x-1}=\dfrac{x^{100}-1}{x^{101}-x^{100}}\)
\(\Rightarrow f'\left(x\right)=\dfrac{\left(x^{100}-1\right)'\left(x^{101}-x^{100}\right)-\left(x^{101}-x^{100}\right)'\left(x^{100}-1\right)}{\left(x^{101}-x^{100}\right)^2}=-\dfrac{x^{101}-101x^{100}+100}{x^{101}\left(x-1\right)^2}\) (2)
(1);(2) \(\Rightarrow P=\dfrac{x^{101}-101x^{100}+100}{x^{101}\left(x-1\right)^2}\)
A = 1 + 2 + 22 + 23 + 24 + ... + 2100
2A = 2 + 22 + 23 + 24 + 25 + ... + 2101
2A - A = ( 2 + 22 + 23 + 24 + 25 + ... + 2101 ) - ( 1 + 2 + 22 + 23 + 24 + ... + 2100 )
A = 2101 - 1
2A = \(2+2^2+2^3+..+2^{100}+2^{101}\)
\(2A-A=A=2^{101-1}\)