tìm x
x2017 =\(\frac{x^{2017}-2}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2017}\)
\(\Rightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{x}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2017}\)
\(\Rightarrow-\frac{1}{x+3}=\frac{1}{2017}\)
\(\Rightarrow x+3=-2017\)
\(\Rightarrow x=-2020\)
\(\frac{2}{2.3}\) + \(\frac{2}{3.4}\) + \(\frac{2}{4.5}\) + .......+ \(\frac{2}{x.\left(x+1\right)}\) = \(\frac{2017}{2019}\)
2 . ( \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\) + .......+ \(\frac{1}{x+1}\) ) = \(\frac{2017}{2019}\)
2 . ( \(\frac{1}{2}\) - \(\frac{1}{x+1}\) ) = \(\frac{2017}{2019}\)
\(\frac{1}{2}\) - \(\frac{1}{x+1}\) = \(\frac{2017}{2019}\) : 2
\(\frac{1}{2}\) - \(\frac{1}{x+1}\) = \(\frac{2017}{4038}\)
\(\frac{1}{x+1}\) = \(\frac{1}{2}\) - \(\frac{2017}{4038}\)
\(\frac{1}{x+1}\) = \(\frac{1}{2019}\)
<=> x + 1 = 2019 => x = 2018
vậy x = 2018
\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2017}{4038}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2019}\)
\(\Rightarrow x+1=2019\)
\(\Leftrightarrow x=2018\)
Vậy \(x=2018\)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2017}\)
<=> \(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2017}\)
<=> \(\frac{-1}{x+3}=\frac{1}{2017}\)
=> \(x+3=-2017\)
<=> \(x=-2020\)
Vậy...
Có : (x+2017)^2 = x^2+4034x+2017^2 = (x^2-4034x+2017^2)+8068x = (x-2017)^2+8068x >= 8068x
=> D <= x/8068x = 1/8068
Dấu "=" xảy ra <=> x-2017=0 <=> x = 2017
Vậy Max của D = 1/8068 <=> x = 2017
k mk nha
Xét :A = x^2017 + x^2017 + 1 + 1 + 1 +..... + 1 ( 2015 số 1)
Áp dụng bđt cosi ta có :
A >= 2017\(\sqrt[2017]{x^{2017}.x^{2017}.1.1.....1}\) = 2017x^2
=> x^2 < = A/2017 = 2x^2017+2015/2017
Tương tự : y^2 < = 2y^2017+2015/2017
z^2 < = 2z^2017+2015/2017
=> x^2+y^2+z^2 < = 2(x^2017+y^2017+z^2017)+3.2015/2017 = 2.3+3.2015/2017 = 3
Dấu "=" xảy ra <=> x=y=z=1
Vậy Max của x^2+y^2+z^2 = 3 <=> x=y=z=1
Tk mk nha
x2017 = \(\frac{x^{2017}-2}{3}\)
\(\frac{3.x^{2017}}{3}=\frac{x^{2017}-2}{3}\)
\(\frac{3.x^{2017}}{3}-\frac{x^{2017}-2}{3}=0\)
\(\frac{3.x^{2017}-x^{2017}+2}{3}=0\)
\(\frac{2.x^{2017}+2}{3}=0\)
\(2.x^{2017}+2=0\)
\(2.x^{2017}=-2\)
\(x^{2017}=-1\)
\(x=-1\)