K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2017

x2017 = \(\frac{x^{2017}-2}{3}\)

\(\frac{3.x^{2017}}{3}=\frac{x^{2017}-2}{3}\)

\(\frac{3.x^{2017}}{3}-\frac{x^{2017}-2}{3}=0\)

\(\frac{3.x^{2017}-x^{2017}+2}{3}=0\)

\(\frac{2.x^{2017}+2}{3}=0\)

\(2.x^{2017}+2=0\)

\(2.x^{2017}=-2\)

\(x^{2017}=-1\)

\(x=-1\)

26 tháng 8 2018

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2017}\)

\(\Rightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{x}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2017}\)

\(\Rightarrow-\frac{1}{x+3}=\frac{1}{2017}\)

\(\Rightarrow x+3=-2017\)

\(\Rightarrow x=-2020\)

1 tháng 7 2018

\(\frac{2}{2.3}\) +   \(\frac{2}{3.4}\) +  \(\frac{2}{4.5}\) + .......+ \(\frac{2}{x.\left(x+1\right)}\) = \(\frac{2017}{2019}\) 

2 . (  \(\frac{1}{2}\) -  \(\frac{1}{3}\) + \(\frac{1}{3}\) -  \(\frac{1}{4}\) + .......+  \(\frac{1}{x+1}\) ) = \(\frac{2017}{2019}\)

2 . ( \(\frac{1}{2}\) -  \(\frac{1}{x+1}\) ) = \(\frac{2017}{2019}\)

\(\frac{1}{2}\) -  \(\frac{1}{x+1}\) =  \(\frac{2017}{2019}\) : 2 

 \(\frac{1}{2}\) -  \(\frac{1}{x+1}\) = \(\frac{2017}{4038}\)

             \(\frac{1}{x+1}\)  =  \(\frac{1}{2}\)  -    \(\frac{2017}{4038}\)

              \(\frac{1}{x+1}\)  = \(\frac{1}{2019}\) 

     <=> x + 1 = 2019 => x = 2018

vậy x = 2018

1 tháng 7 2018

\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2017}{4038}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2019}\)

\(\Rightarrow x+1=2019\)

\(\Leftrightarrow x=2018\)

Vậy  \(x=2018\)

19 tháng 8 2018

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2017}\)

<=>  \(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2017}\)

<=>  \(\frac{-1}{x+3}=\frac{1}{2017}\)

=>  \(x+3=-2017\)

<=>  \(x=-2020\)

Vậy...

26 tháng 11 2017

Có : (x+2017)^2 = x^2+4034x+2017^2 = (x^2-4034x+2017^2)+8068x = (x-2017)^2+8068x >= 8068x

=> D <= x/8068x = 1/8068

Dấu "=" xảy ra <=> x-2017=0 <=> x = 2017

Vậy Max của D = 1/8068 <=> x = 2017

k mk nha

7 tháng 1 2018

Xét :A = x^2017 + x^2017 + 1 + 1 + 1 +..... + 1 ( 2015 số 1)

Áp dụng bđt cosi ta có : 

A >= 2017\(\sqrt[2017]{x^{2017}.x^{2017}.1.1.....1}\) = 2017x^2

=> x^2 < = A/2017 = 2x^2017+2015/2017

Tương tự : y^2 < = 2y^2017+2015/2017

z^2 < = 2z^2017+2015/2017

=> x^2+y^2+z^2 < = 2(x^2017+y^2017+z^2017)+3.2015/2017 = 2.3+3.2015/2017 = 3

Dấu "=" xảy ra <=> x=y=z=1

Vậy Max của x^2+y^2+z^2 = 3 <=> x=y=z=1

Tk mk nha

7 tháng 1 2018

Bài này lm rồi mà, đăng lên lmj