K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

Với mọi x ta có :

\(A=\left|x-3\right|+\left|x-2\right|\)

\(\Leftrightarrow A=\left|x-3\right|+\left|2-x\right|\)

\(\Leftrightarrow A\ge\left|x-3+2-x\right|\)

\(\Leftrightarrow A\ge\left|-1\right|\)

\(\Leftrightarrow A\ge1\)

Dấu "=" xảy ra khi :

\(\left(x-3\right)\left(2-x\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x-3\ge0\\2-x\ge0\end{cases}}\\\hept{\begin{cases}x-3\le0\\2-x\le0\end{cases}}\end{cases}}\)

8 tháng 10 2017

min |x+5|+2-x= -3

8 tháng 10 2017

bn giải hoàn chỉnh giùm mk dc k

1 tháng 10 2018

 (x−1)(x+2)(x+3)(x+6)= [(x−1)(x+6)][(x+2)(x+3)] = (x^2+5x−6)(x^2+5x+6) = (x^2−5x)^2−36≥−36

=> Giá trị nhỏ nhất biểu thức đã cho là -36 xảy ra khi và chỉ khi (x^2−5x)^2=0

                                                                                         <=> x(x−5)=0

<=>  x=0 hoặc x−5=0

<=>  x=0 hoặc x=5

1 tháng 10 2018

C=(x+1)(x-2)(x-3)(x-6)

  =(x+1)(x-6)(x-2)(x-3)

  =(x^2-5x-6)(x^2-5x+6)

  =(x^2-5x)^2-6^2

  =[x(x-5)]^2-6^2

để Cmin thì [x(x-5)]^2 phải min

mà [x(x-5)]^2\(\ge\)0 nên [x(x-5)]^2min=0 =>C=0-6^2=-6^2

<=>x=0 hoặc x-5=0<=>x=5

vậy Cmin=-6^2 khi x=0 hoặc x=5

18 tháng 10 2020

       \(x^2-4x+6\)

\(=x^2-4x+4+2\)

\(=\left(x-2\right)^2+2\)

\(\ge\left(3-2\right)^2+2\)

\(\ge1+2\)

\(\ge3\)

Dấu "=" xảy ra <=> x=3

Vậy min của biểu thức bằng 3 khi x=3

21 tháng 5 2019

Xét \(A\ge-\frac{1}{2}\)

<=> \(\frac{6x+11}{x^2-2x+3}\ge-\frac{1}{2}\)

<=> \(x^2-2x+3\ge-12x-22\)

<=> \(x^2+10x+25\ge0\)<=> \(\left(x+5\right)^2\ge0\)(luôn đúng) 

Vậy \(MinA=-\frac{1}{2}\)khi x=-5

7 tháng 12 2021

Giups mk vs ạ ai nhanh mk tick nha

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

Lời giải:
\(x^2+3y^2+10x-14y-2xy=11\)

$\Leftrightarrow (x^2-2xy+y^2)+2y^2+10x-14y=11$

$\Leftrightarrow (x-y)^2+10(x-y)+25+(2y^2-4y+2)=38$

$\Leftrightarrow (x-y+5)^2+2(y-1)^2=38$

$\Rightarrow (x-y+5)^2=38-2(y-1)^2\leq 38$

$\Rightarrow -\sqrt{38}\leq x-y+5\leq \sqrt{38}$

$\Leftrightarrow -\sqrt{38}-5\leq x-y\leq \sqrt{38}-5$
Vậy $A_{\min}=-\sqrt{38}-5$ và $A_{\max}=\sqrt{38}-5$

 

19 tháng 10 2016

\(A=x^2+13y^2-2xy-11y-x+2017,25\)

\(=\left[x^2-x\left(2y+1\right)+\frac{\left(2y+1\right)^2}{4}\right]+13y^2-\frac{\left(2y+1\right)^2}{4}+2017,25\)

\(=\left(x-\frac{2y+1}{2}\right)^2+12\left(y-\frac{1}{2}\right)^2+2014\ge2014\)

Dấu "=" xảy ra khi y = 1/2 và x = 1

Vậy ...........................................................

19 tháng 10 2016

cảm ơn :)

27 tháng 9 2016

a ) \(A=\left|x+1\right|+\left|x+2\right|-2x+3\ge2x+3-2x+3=6\)

Dấu " = " xảy ra khi \(\left(x+2\right)\left(x+1\right)\ge0\)

b ) 

\(B=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=4\)

Dấu " = " xảy ra khi \(\left(2x+3\right)\left(1-2x\right)\ge0\)

c )

\(C=\left|x-1\right|+\left|x-2\right|+\left|x-2\right|\ge\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)

Dấu " = " xảy ra khi \(x=2\)

  

Y
5 tháng 3 2019

câu a) mk k hiểu lắm!