cho tam giác ABC nhọn, BD là đường trung tuyến, CE là đường cao. Sao cho BD = CE và góc BDC = góc ECA. BD cắt CE tại H. Chứng minh a) HE*HC = HB*HD
b) chứng minh tam giác ABC đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\angle BEC=\angle BDC=90\Rightarrow BCDE\) nội tiếp \(\Rightarrow\angle ADE=\angle ABC\)
Xét \(\Delta ADE\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\angle BACchung\\\angle ADE=\angle ABC\end{matrix}\right.\)
\(\Rightarrow\Delta ADE\sim\Delta ABC\left(g-g\right)\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\Rightarrow AD.AC=AE.AB\)
b) Vì \(\Delta AMC\) vuông tại M có \(MD\bot AC\Rightarrow AM^2=AD.AC\)
Vì \(\Delta ANB\) vuông tại N có \(NE\bot AB\Rightarrow AN^2=AE.AB\)
mà \(AE.AB=AD.AC\Rightarrow AM^2=AN^2\Rightarrow AM=AN\)
\(\Rightarrow\Delta AMN\) cân tại A
c) Từ D kẻ đường thẳng vuông góc với DE cắt CE tại F
Xét \(\Delta DEF\) và \(\Delta DBC:\) Ta có: \(\left\{{}\begin{matrix}\angle EDF=\angle BDC=90\\\angle DEF=\angle DBC\left(BEDCnt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta DEF\sim\Delta DBC\left(g-g\right)\Rightarrow\dfrac{DE}{EF}=\dfrac{DB}{BC}\Rightarrow DE.BC=DB.EF\)
Ta có: \(\angle EDF-\angle BDF=\angle CDB-\angle BDF\left(=90-\angle BDF\right)\)
\(\Rightarrow\angle EDB=\angle CDF\)
Xét \(\Delta DEB\) và \(\Delta DFC:\) Ta có: \(\left\{{}\begin{matrix}\angle EDB=\angle FDC\\\angle DCF=\angle DBE\left(BEDCnt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta DEB\sim\Delta DFC\left(g-g\right)\Rightarrow\dfrac{CF}{BE}=\dfrac{CD}{BD}\Rightarrow BE.CD=BD.CF\)
\(\Rightarrow BE.CD+DE.BC=BD.CF+BD.EF=BD\left(CF+EF\right)\)
\(=BD.CE\)
a, Xét Δ ABD và Δ ABE, có :
\(\widehat{ADB}=\widehat{AEB}=90^o\)
\(\widehat{BAD}=\widehat{BAE}\) (góc chung)
=> Δ ABD ∾ Δ ABE (g.g)
b, Xét Δ EHB và Δ DHC, có :
\(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)
\(\widehat{HEB}=\widehat{HDC}=90^o\)
=> Δ EHB ∾ Δ DHC (g.g)
=> \(\dfrac{EH}{DH}=\dfrac{HB}{HC}\)
=> \(HB.HD=HC.HE\)
a) xét tam giác ADB và AEC có:
góc A chung
góc ADB= góc AEC (=90 độ)
=> ADB đồng dạng vs AEC (g.g)
b) xét tam giác EHB và tam giác DHC có:
EHB= DHC (2 góc đối đỉnh)
HEB- HDC (=90độ)
=> EHB =DHC (g.g)
=> HE/HB = HD/HC
=> HE.HC=HD.HB